www.emsl.pnl.gov

902 Battelle Boulevard * P.O. Box 999 * Richland, WA 99352

I M : ; I / Environmental Molecular Sciences Laboratory

When Good Code Goes Bad - Workshop on Debugging December 2006
Using GDB
Transcript

The next step we're going to go through is GDB. GDB is fine for sequential code. You compile your
code with the dash G option; you start GDB giving it the name of the program you're going to
execute. You get a prompt back. Usually what you want to do is to set a breakpoint, and then you
can step through your code, change values in your code, do a variety of things.

The parallel version becomes something a little more dicey. You're actually not going to follow the
same pattern on a sequential version of debugging with GDB; you're going to follow a slightly
different road.

We're going to start of with everything being done sequentially. Go through the usual process of
making the code. IFORT and GDB don't really quite get along very well, so you have to use IDB,
which is Intel's version. And what were going to do is use IDB dash GDB. This allow you to use
GDB commands.

The first thing I'm going to do is break right at the very first instruction. When the code starts
executing, it will just automatically execute until it reaches that point, and then stop. Then I can
control what it does next.

Okay, so we tell it to run, and in this case what happened was it ran. And it ran, and it ran, and it
ran. And I finally hit a control-C. There's no way that it should have run for as long as it had. At
that point it's kind of hard to know what to do, other than look at your initial assumptions. Did you
put in an appropriate input value, and are you reading something reasonable? And we look at our
input value, and we see that it's really not appropriate.

So we fix that. And now we're going to go ahead and start it up again. This is the first line that GDB
encountered, line number fourteen. Start one equals one. Here you can list what's going on. The list
command will just simply tell you five lines above and four lines below your current line. At this
point, we've already passed the reads, so we've read the matrix in. So I just want to see, does the
matrix make sense? | print the first value and the last value, and that looks right.

Right now we're at line fourteen. | can either step through this or | can use next. If | step through
this, every time | encounter a function call, it's going to go into that function. We're going to go hit
finish. What I'm doing here is just hitting return. It's going to redo the last command. SetupBC. If |
type in step, I'm going to go into BC. The next takes us to call bc; click it again... call matrix.

What I'm doing here is just hitting return. It's going to redo the last command. Right now we're at
line fourteen; if we step we're going to go hit finish, then hit setup bc. | can either step through this
or | can use next. If | type in step, I'm going to go into BC. The next takes us to Call Matrix.

EMSL is located at PNNL PaCIfICNorthWGSt

LABORATORY

Proudly Operated by Battelle Since 1965

Page 2

Now I'm going to jump into the matrix. And we get this set of input values to the function. We're
going to do this loop starting with | being set to the start and finish indices of the loop. And print the
start value.

The idea behind debugging is to collect what information you can, as much information as you can,
and in as reasonable way as you can. And what's gone on here is that, | initialized the value; it
doesn't complain about the one. But I'm passing in a zero. Zero has no meaning to it.

We go back, fix that error, recompile the code. So now what we're going to do is rerun the code, and
we're going to run it to completion. And this time we decided to set a twelve, because that's where
the actual first value is. And we're going to go through the same thing.

Now let's just verify that what we've got is okay. It looks just fine. So it looks like everything up to
output is good. We end it, and now we want to see whether our results are correct. And they're not.

Knowing that things were fine up to output, and we're still not getting the correct result, we need to
look at output. So let's step into this function, and here you're immediately told what's wrong. Or at
least you're immediately told that there is a problem. You're told that there's a problem because you
can see that the call is receiving two values; you're sending it three. By knowing what the code looks
like, we know that max should not be ten; that should be nmax.

Okay, at this point we know that we're going to have to fix the code up, so here we see that you have
the wrong parameters passed. When you look into output, you'll see that we're using max as nmax,
we're allocating the wrong size array. We start marching through this array, and eventually ask for
things in an inappropriate order.

So we compile the code. This time probably this will fix it. Not a guarantee, but it's a lot faster just
to execute and to take a look. | don't want us to start GDB again. Now, if there were an error, back
to GDB.

All right. Well, that's fine. We've got the sequential version working correctly. Now we want to
jump into the parallel run.

The first thing you want to do when you have parallel code is you want to put in an infinite loop into
the code immediately. The infinite loop will stop the code. So you're actually going to start the code
in a normal fashion. You don't start it with GDB and then type in run. You start the code the way
you normally start it. Then for every process you want to debug, open up a new window. And
you're going to start GDB on each of those.

You have to figure out what the processes are. After you start GDB without putting in the function
name--just GDB by itself--you then attach the process to GDB. And finally, you have to reset the
value of your infinite loop. By the time you attach the processes, GDB will control the execution.
Then you can release the code from its infinite loop.

So we're going to start with the same code we had with the second hack, only we add in an infinite
loop. And you'll notice now I'm using two screens. The top screen is node zero; the bottom screen is

Page 3

node one. I'm going to walk through this procedure several times, because it's the sort of thing you
need to just see over and over and over again. It's very easy to mess this up.

So, clean everything up, make parallel, submit. Now, what I'm going to do is type in bjobs and it
tells that I'm using "m570". That's where the code's actually running. So I log in to m570, and you
want to find out where they're actually running, what the process IDs are. So you do a P-S dash A-
U-X, and, rather than seeing a few hundred processes to take a look at, I grep for matmul, and | find
my two process IDs.

At this point | start IDB, and I'm just going to start it without using the function name. But I'm going
to start IDB on both processes. Now, I find it easier to do node one first and node zero second,
especially if you're using GDB. GDB gives you a lot of information, and once you start getting
things rolling, you'll lose this information, or at least it will scroll outside the view of your window if
you start it on node zero. Since | always do PS on node zero, | always do the attachment on node one
first, then do the attachment on node zero. That way | don't have to go scrolling through, finding the
information.

What I'm going to do is attach PID-2722. It executes and it brings me to my DO-WHILE loop, my
infinite loop. Then I'm going to attach, in node zero, 2721, and we're at the same point. | force Set
equal to one. That breaks the infinite loop. And I do it here, and the infinite loop's broken.

What I'm going to do with this code in parallel is try to find out where my sends and receives are.
And I'm going to put in break points that will cause GDB to stop processing at those points. | know
my sequential version's okay; | know whatever I'm going to run here is going to be okay in terms of
the computation. There may be other errors | haven't found yet. But I'm more likely to run into a
communications problem.

Because this code is so small, I'm going to just start setting breakpoints at every one of the sends and
receives. If you're dealing with thousands of lines of code, this isn't practical. By the time you're
done setting all your breakpoints, your session will be up. Before I start doing anything on the code,
I'm going to set the breakpoints on node one. So now when | start the code, it's just going to go
merrily along until it runs into the first communications point on each node.

Now, it runs into this send and this receive. This is wrong. You have different types; you have
different tag numbers. That doesn't work. So we quit. Back into the login node.

So we add in this missing send and receive. We check to see that we've started running, and we
check to see which node you're actually running on, and then you can go ahead and start running on
that node. Now you get them both started.

At this point, we're going to do the exact same process, figure out where the sends and receives are.
And this time you'll see that there are six breakpoints. So we start it running, and we get to
distribute_mat and receive_mat. These look like the second sets of sends and receives. We want to
look at these files, and once again we have something wrong. We see that mat_size is wrong.

We continue executing this thing, and finally hit a SEGV because we have a wrong value in there.
We hit the SEGV, so we're going to use backtrace, and we get a whole lot of information. Now,

Page 4

what BT does is it tells you where the code was in execution, and it tells you how it got to that point
as a series of function calls. So each of these values are calls. These ones you're not going to worry
too much about--starting and libc_start. Main, matmul, that's the starting point for the matrix
multiplier. Then it called send mat, distribute mat, mpi send, and then the rest of this is just elan
stuff. Nothing you're going to debug in that, so it's not worth taking a look at this, unless you really
understand elan.

But that's certainly something that should leap out at you as an issue. We, again, know how to fix
this from the previous discussion, so we go ahead and finish off. When I continued on... well,
actually, eventually what happened was | killed it here, and then 1 killed it on node one. So we
terminate; we get out of this altogether. Back to the login node.

You look through the code, you'll see that mat_size was set in the wrong place, so you put it in the
right place. This was the case where it was put it in the read matrix, and that was clearly the wrong
place to have it. So you just simply move it.

So we fix that, clean it up, run it, and get in the right place. Start the processes, start IDB, and do our
attachment. And do the same thing on node one. Break the infinite loop, get the locations of the
sends and receives. And in this case, it's pretty clear that the sends and receives are good. So it's
already running. So click continue. Same thing here. Get all the breakpoints set. We hit continue.
And we're just going to step through.

I got to this point, and what happened here was that it just hung. So I just hit a control-C this time
and killed it. You can see why it hung. It failed again because of missing tags, and | know what's
gone wrong here. Kill them both. Start again.

Getting our processes. Starting IDB. Go ahead, do the attachment, break, and continue. And so |
get to this breakpoint and we finish.

What have we learned from this exercise with GDB? Well, one thing you need to do is get prepared.
It's not as much preparation as you need for print and flush if you're using hand-coded debugging.
But you still really want to be aware of what you're doing and where your code is.

GDB is wonderful for sequential code. It's okay for a couple processes. As you get into larger and
larger numbers of processors, you will have a more and more difficult time figuring out what's going
on. So, there's sort of a question of your ability to process versus the ability of GDB to function.
GDB will do just fine. Your ability to deal with it is really going to be the limiting factor. On two
processors, it's not that bad to work with. And it's nice in that you can set breakpoints at the sends
and receives, and run it until it breaks and see whether it did what it was supposed to do. On the
other hand, once you start getting four processes, eight processes, sixteen processes that you're
looking at simultaneously, it starts to become more of a problem.

One good thing is it gives you control over the execution of your program. When you're using hand-
coded debug statements, you could put in some interaction, depending on how you have it set up, but
you really have to know what you're doing well in advance. GDB allows you to sort of fluidly
change the starting and stopping points of the execution, which gives you a lot more control over

Page 5

how you execute the code.

You don't really have to do much to the code. If you're going to do it in parallel, you do have to put
in the infinite loop, and you have to remember to reset the infinite loop to get it going.

