Spectroscopy and Diffraction

Molecular level solid-, liquid- and gas-interactions can be investigated through structural, chemical and compositional analysis with remarkable atomic scale spatial and high-energy resolution spectrometers and diffractometers for novel fundamental research.

Resources and Techniques

  • Electron spectroscopy
  • Electron backscatter diffraction
  • Atom probe tomography
  • Ion/molecular beam spectroscopy
  • 57Fe-Mössbauer spectroscopy
  • Optical spectroscopy
  • X-ray tomography and diffractometers

Additional Information:

Description

Capability Details

  • Electron spectrometers with high spatial and energy resolution in-situ and ex-situ x-ray photoelectron spectroscopy
  • Secondary ion mass spectrometers with single and cluster ion sources, and time-of-flight and magnetic mass analyzers
  • Electron microscopes with energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and electron backscatter diffraction
  • Local Electrode Atom Probe tomography system with 355 nm UV laser and reflectron flight path for high mass resolution
  • Fourier transform infrared spectrometers with vacuum bench and variable temperature capability
  • Confocal-Raman, cryogenic time-resolved fluorescence, circular dichroism, stopped-flow absorbance, laser-induced breakdown and sum frequency generation optical tools
  • Variable temperature Mössbauer spectroscopy systems for bulk (transmission mode) and surface (emission) measures
  • X-ray diffraction instruments with sealed tube or rotating anode for analysis of powder, thin film and single crystal samples; point, CCD and image plate detection. X-ray computed tomography with 225- and 320-kV fixed, and 225-kV rotating target options using a 2000x2000 pixel area detector and state-of-the-art processing and visualization software

Electron spectroscopy – Achieving nanoscale spatial resolution, users can study elemental composition, structural properties, and chemical states of materials with applications to thin films, nanomaterials, catalysis, biological and environmental sciences, corrosion, and atmospheric aerosols.

Electron backscatter diffraction – Samples of microstructures in environmental and material science can be examined with three dimensional reconstruction and characterization using focused ion beam-electron backscatter diffraction analysis.

Atom probe tomography – Atom Probe Tomography (APT) provides comprehensive and accurate three dimensional chemical imaging for characterization of both metallic materials and low electrical conductivity materials, such as semiconductors, oxides, carbides, nitrides and composites.

Ion/molecular beam spectroscopy – Secondary ions and scattered ions from various materials are analyzed in straight, magnetic or time-of-flight mass spectrometers to investigate elemental, isotopic and molecular compositions through surface spectra, one dimensional depth profiling and two dimensional and three dimensional chemical imaging.

57Fe-Mössbauer spectroscopy – Using 57Fe (a versatile, highly sensitive, and stable isotope with natural abundance of 2.2%), users can obtain information about the valence state, coordination number and magnetic ordering temperatures for a wide range of Fe-containing samples; (e.g., Fe-organic matter complexes, sediments, catalysts, glass materials).

Optical spectroscopy – Fluorimetry, stopped-flow absorbance, FTIR and confocal-Raman tools enable analysis for biology, radiochemistry, and catalysis. Sum frequency generation-vibrational spectroscopy and second harmonic generation are available to study liquid, liquid and solid, and liquid interfaces.

X-ray tomography and diffractometers – X-ray computed tomography delivers images of microstructures (components, pore structure and connectivity) in biological and geological samples at tens of microns spatial resolution. General purpose and specialized x-ray diffraction systems, including single-crystal, microbeam and variable temperature powder capabilities, empower phase analysis of polycrystalline, epitaxial thin films, protein structure determination, and studies of problematic small inorganic molecules.

Instruments

The atmospheric pressure reactor system is designed for testing the efficiency of various catalysts for the treatment of gas-phase pollutants. EMSL...
Custodian(s): Russell Tonkyn
The LEAP® 4000 XHR local electrode atom probe tomography instrument enabled the first-ever comprehensive and accurate 3-D chemical imaging studies...
Custodian(s): Arun Devaraj, Daniel Perea
The Bio-Logic® SFM-400/S is a 4-syringe stopped-flow system that offers the capability to carry out complex, multi-mixing experiments with the...
Custodian(s): Zheming Wang
EMSL's non-thermal interfacial reactions instrumentation is available for use in research directed toward understanding non-thermal interfacial...
Custodian(s): Greg Kimmel
EMSL's ultrahigh vacuum (UHV) surface chemistry-high-resolution electron energy loss spectroscopy (HREELS) system is designed to study the molecular...
Custodian(s): Mike Henderson

Publications

Protein markers for identification of Y. pestis and their variation related to culture
Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism...
The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and...
The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for...
We report on ab initio molecular dynamics simulations of Ca-rich montmorillonite systems, in different hydration states in the presence of...

Science Highlights

Posted: October 17, 2014
A multi-institutional team of researchers studied how and when cloud ice crystals form. Dust is usually a primary catalyst encouraging ice formation...
Posted: September 12, 2014
Green fluorescent proteins, or GFPs, are found in jellyfish and other marine animals and glow green when exposed to light. Scientists use GFPs use...
Posted: June 17, 2014
The Science Hexavalent chromium is a major environmental contaminant at several Department of Energy (DOE) sites as well as other sites around the...
Posted: April 08, 2014
The Science Uranium poses a serious risk of groundwater contamination at the Hanford Site. But most previous experimental studies addressing this...
Posted: March 12, 2014
The Science Lithium-sulfur batteries are promising options for electric vehicles and for storing renewable energy because they can store a lot of...

Molecular level solid-, liquid- and gas-interactions can be investigated through structural, chemical and compositional analysis with remarkable atomic scale spatial and high-energy resolution spectrometers and diffractometers for novel fundamental research.

Resources and Techniques

  • Electron spectroscopy
  • Electron backscatter diffraction
  • Atom probe tomography
  • Ion/molecular beam spectroscopy
  • 57Fe-Mössbauer spectroscopy
  • Optical spectroscopy
  • X-ray tomography and diffractometers

Additional Information:

Effect of Composition and Heat Treatment on MnBi Magnetic Materials.

Abstract: 

The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

Citation: 
Cui J, JP Choi, E Polikarpov, ME Bowden, W Xie, G Li, Z Nie, N Zarkevich, MJ Kramer, and DD Johnson.2014."Effect of Composition and Heat Treatment on MnBi Magnetic Materials."Acta Materialia 79:374-381. doi:10.1016/j.actamat.2014.07.034
Authors: 
J Cui
JP Choi
E Polikarpov
ME Bowden
W Xie
G Li
Z Nie
N Zarkevich
MJ Kramer
DD Johnson
Volume: 
Issue: 
Pages: 
Publication year: 
2014

Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C.

Abstract: 

The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.

Citation: 
Riley BJ, MJ Schweiger, DS Kim, WW Lukens, BD Williams, C Iovin, CP Rodriguez, NR Overman, ME Bowden, DR Dixon, JV Crum, JS Mccloy, and AA Kruger.2014."Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C."Journal of Nuclear Materials 452(1-3):178-188. doi:10.1016/j.jnucmat.2014.04.027
Authors: 
BJ Riley
MJ Schweiger
DS Kim
WW Lukens
BD Williams
C Iovin
CP Rodriguez
NR Overman
ME Bowden
DR Dixon
JV Crum
JS Mccloy
AA Kruger
Volume: 
452
Issue: 
Pages: 
178-188
Publication year: 
2014

In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors.

Abstract: 

Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

Citation: 
Jeon JW, R Sharma, P Meduri, BW Arey, HT Schaef, J Lutkenhaus, JP Lemmon, PK Thallapally, MI Nandasiri, BP McGrail, and SK Nune.2014."In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors."ACS Applied Materials & Interfaces 6(10):7214-7222. doi:10.1021/am500339x
Authors: 
JW Jeon
R Sharma
P Meduri
BW Arey
HT Schaef
J Lutkenhaus
JP Lemmon
PK Thallapally
MI Nasiri
BP McGrail
SK Nune
Instruments: 
Volume: 
6
Issue: 
10
Pages: 
7214-7222
Publication year: 
2014

Protein markers for identification of Yersinia pestis and their variation related to culture.

Abstract: 

Protein markers for identification of Y. pestis and their variation related to culture

Citation: 
Wunschel DS, HE Engelmann, KD Victry, BH Clowers, CM Sorensen, NB Valentine, CM Mahoney Fahey, TW Wietsma, and KL Wahl.2014."Protein markers for identification of Yersinia pestis and their variation related to culture."Molecular and Cellular Probes 28(2-3):65-72. doi:10.1016/j.mcp.2013.12.001
Authors: 
DS Wunschel
HE Engelmann
KD Victry
BH Clowers
CM Sorensen
NB Valentine
CM Mahoney Fahey
TW Wietsma
KL Wahl
Volume: 
28
Issue: 
Pages: 
65-72
Publication year: 
2014

Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2.

Abstract: 

We report on ab initio molecular dynamics simulations of Ca-rich montmorillonite systems, in different hydration states in the presence of supercritical CO2. Analysis of the molecular trajectories provides estimates of the relative H2O:CO2 ratio per interspatial cation. The vibrational density of states in direct comparison with dipole moment derived IR spectra for these systems provide unique signatures that can used to follow molecular transformation. In a co-sequestration scenario, these signatures could be used to identify the chemical state and fate of Sulfur compounds. Interpretation of CO2 asymmetric stretch shift is given based on a detailed analysis of scCO2 structure and intermolecular interactions of the intercalated species. Based on our simulations, smectites with higher charge interlayer cations at sub-single to single hydration states should be more efficient in capturing CO2, while maintaining caprock integrity. This research would not have been possible without the support of the office of Fossil Energy, Department of Energy. The computational resources were made available through a user proposal of the EMSL User facility, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Citation: 
Lee MS, BP McGrail, and VA Glezakou.2014."Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2."Environmental Science & Technology 48(15):8612-8619. doi:10.1021/es5005889
Authors: 
MS Lee
BP McGrail
VA Glezakou
Instruments: 
Volume: 
48
Issue: 
15
Pages: 
8612-8619
Publication year: 
2014

Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs.

Abstract: 

The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration. Key Words: Lipid biomarkers—Photosynthesis—Iron—Hot springs—Mars. Astrobiology 14, 502–521.

Citation: 
Parenteau MN, LL Jahnke, JD Farmer, and SL Cady.2014."Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs."Astrobiology 14(6):, doi:10.1089/ast.2013.1122
Authors: 
MN Parenteau
LL Jahnke
JD Farmer
SL Cady
Instruments: 
Volume: 
Issue: 
Pages: 
Publication year: 
2014

Structures and Stabilities of (MgO)n Nanoclusters.

Abstract: 

Global minima for (MgO)n structures were optimized using a tree growth−hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. New lowest energy isomers were found for a number of (MgO)n clusters. The most stable isomers for (MgO)n (n > 3) are 3-dimensional. For n < 20, hexagonal tubular (MgO)n structures are more favored in energy than the cubic structures. The cubic structures and their variations dominate after n = 20. For the cubic isomers, increasing the size of the cluster in any dimension improves the stability. The effectiveness of increasing the size of the cluster in a specific dimension to improve stability diminishes as the size in that dimension increases. For cubic structures of the same size, the most compact cubic structure is expected to be the more stable cubic structure. The average Mg−O bond distance and coordination number both increase as n increases. The calculated average Mg−O bond distance is 2.055 Å at n = 40, slightly smaller than the bulk value of 2.104 Å. The average coordination number is predicted to be 4.6 for the lowest energy (MgO)40 as compared to the bulk value of 6. As n increases, the normalized clustering energy ΔE(n) for the (MgO)n increases and the slope of the ΔE(n)vs n curve decreases. The value of ΔE(40) is predicted to be 150 kcal/mol, as compared to the bulk value ΔE(∞) = 176 kcal/mol. The electronic properties of the clusters are presented and the reactive sites are predicted to be at the corners.

Citation: 
Chen M, AR Felmy, and DA Dixon.2014."Structures and Stabilities of (MgO)n Nanoclusters."Journal of Physical Chemistry A 118(17):3136-3146. doi:10.1021/jp412820z
Authors: 
M Chen
AR Felmy
DA Dixon
Instruments: 
Volume: 
118
Issue: 
17
Pages: 
3136-3146
Publication year: 
2014

Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol.

Abstract: 

The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

Citation: 
O'Brien RE, A Neu, SA Epstein, A MacMillan, B Wang, ST Kelly, S Nizkorodov, A Laskin, RC Moffet, and MK Gilles.2014."Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol."Geophysical Research Letters 41(2):4347-4353. doi:10.1002/2014GL060219
Authors: 
RE O'Brien
A Neu
SA Epstein
A MacMillan
B Wang
ST Kelly
S Nizkorodov
A Laskin
RC Moffet
MK Gilles
Facility: 
Volume: 
41
Issue: 
2
Pages: 
4347-4353
Publication year: 
2014

Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron.

Abstract: 

The dissolution of Tc(IV) sulfide and concurrent transformation of sulfidated ZVI during 2 oxidation were examined. Kinetic data obtained with 10 mL batch reactors showed that Tc(VII) 3 reduced by sulfidated nZVI has significantly slower reoxidation rates than Tc(VII) reduced by 4 nZVI only. In a 50 mL batch reactor, initial inhibition of Tc(IV) dissolution was apparent and 5 lasted until 120 hours at S/Fe = 0.112, presumably due to the redox buffer capacity of FeS. This 6 is evidenced by the parallel trends in oxidation-reduction potentials (ORP) and Tc dissolution 7 kinetics. Mӧssbauer spectra and micro X-ray diffraction of S/Fe = 0.112 suggested the 8 persistence of FeS after 24-h oxidation although X-ray photoelectron spectroscopy indicated 9 substantial surface oxidation. After 120-h oxidation, all characterizations showed complete 10 oxidation of FeS, which further indicates that FeS inhibits Tc oxidation. X-ray absorption 11 spectroscopy for S/Fe = 0.011 showed significantly increasing percentage of TcS2 in the solid 12 phase after 24-h oxidation, indicating TcS2 is more resistant to oxidation than TcO2. At S/Fe = 13 0.112, the XAS results revealed significant transformation of Tc speciation from TcS2 to TcO2 14 after 120-h oxidation at S/Fe = 0.112. Given that no apparent Tc dissolution occurred during this 15 period, the speciation transformation might play a secondary role in hindering Tc oxidation, 16 especially as redox buffer capacity approached depletion.

Citation: 
Fan D, R Anitori, BM Tebo, PG Tratnyek, JS Lezama Pacheco, RK Kukkadapu, L Kovarik, MH Engelhard, and ME Bowden.2014."Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron."Environmental Science & Technology 48(13):7409-7417. doi:10.1021/es501607s
Authors: 
D Fan
R Anitori
BM Tebo
PG Tratnyek
JS Lezama Pacheco
RK Kukkadapu
L Kovarik
MH Engelhard
ME Bowden
Instruments: 
Volume: 
48
Issue: 
13
Pages: 
7409-7417
Publication year: 
2014

Pages