Office of Science

Subsurface Flow and Transport

EMSL users can employ subsurface flow and transport capabilities to study chemical reactions in heterogeneous natural materials with an emphasis on soil and subsurface systems. EMSL's approach to subsurface flow and transport studies is holistic, integrating flow cells, analytical tools, tomographic imaging, and predictive modeling capabilities to study subsurface phenomena. Topics of interest include:

Photo of researchers with subsurface flow and transport instruments

A variety of flow cells is available to EMSL users, including: column, batch, radial, wedge, and rectangular. Micromodels with desired pore structures can be fabricated from various substrates to study flow and reactive processes at the pore scale. Flow cells are used in coordination with high-precision, high-sensitivity analytical tools to generate data about sample characteristics by detecting the presence of carbon, trace metals, ions, nonvolatile compounds, thermally labile chemicals, and more. Pore structures and other heterogeneities in natural materials can be imaged using EMSL's X-ray computed tomography instrument. EMSL users also can design experiments using the predictive subsurface flow and transport simulator, STOMP (Subsurface Transport Over Multiple Phases). Data derived from experiments using EMSL's subsurface flow and transport capabilities are used to further refine STOMP, continually increasing its precision.

Capability Detail

For more information, refer to the "Capabilities" table that links to detailed information about each of EMSL's subsurface flow and transport instruments, as well as the appropriate contact(s). Brief details about primary subsurface flow and transport tools available to EMSL users include:

  1. A Unified Multi-Scale Model for Pore-Scale Flow Simulations in Soils.
  2. Characterization and modeling of the cemented sediment surrounding the Iulia Felix glass.
  3. Asymmetry of radiation damage properties in Al-Ti nanolayers.
  4. Chemical Stabilization of Hanford Tank Residual Waste.
  5. Surface Condensation of CO2 onto Kaolinite.
  1. Iron-bearing minerals in sediments naturally reduce contaminant levels (Lack of iron)
  2. Predictive models of environmental reaction kinetics made more accurate, scalable (Scaled up)
  3. Scientists gain first quantitative insights into electron transfer from minerals to microbes (Tunable transfer)
  4. EMSL’s Chinook provides a new angle for validating pore-scale flow simulations (Go with the flow)
  5. Micromodels redefine how bubbles characterize CO2 gas flow (Breaking down the bubbly)

Subsurface Flow and Transport Capabilities Available at EMSL

Instrument Contact
Analytical: Total Organic Carbon Analyzer (TOC) Wietsma, Tom
Analytical: Chromatograph, Gas/Mass Spec System 2005 Wietsma, Tom
Analytical: Chromatograph, Ion Wietsma, Tom
Analytical: Chromatograph, Liquid Wietsma, Tom
Mass Spectrometer: Inductively Coupled Plasma (ICP-MS) Wietsma, Tom
SFTEL: Flow Cell Oostrom, Mart
Wietsma, Tom
SFTEL: Hydraulic Property Apparati Oostrom, Mart
Wietsma, Tom
SFTEL: Pore Scale Micromodels Oostrom, Mart
X-ray Computed Tomography Bowden, Mark
Varga, Tamas
Subsurface Flow and Transport Capability Lead: Mark Bowden | , 509-371-7816