Quiet Wing

EMSL’s Quiet Wing supports a wide range of research areas, including climate, biological, environmental and energy systems, of importance to the Department of Energy. It is among the most advanced quiet laboratories in the world for high-resolution imaging capabilities.

The Quiet Wing is a unique research environment housing a suite of ultrasensitive microscopy and scanning instruments. It was designed to help accelerate critical science by allowing state-of-the-art ultrasensitive microscopy equipment to operate at optimal resolution. A temperature-controlled facility, the wing’s design eliminates or reduces to a minimum the vibrations, acoustics and electromagnetic noise that can interfere with the resolution of ultrasensitive scientific instrumentation.

The 9,500-square-foot facility features eight quiet laboratory cells and a sample preparation area. The wing currently houses seven microscopy instruments and has room for one more. These microscopes are just a few of the extensive suite of microscopy instruments at EMSL available for scientific inquiry.

EMSL's microscopy capabilities, including those in the Quiet Wing, are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Learn more about becoming an EMSL user.

Learn more about each instrument and the science it advances on EMSL's YouTube channel and watch the video below on the Quiet Wing.

A new DTEM – Dynamic Transmission Electron Microscope – is under development at EMSL in collaboration with scientific colleagues at Pacific Northwest National Laboratory. It will be housed in the Quiet Wing. To learn more about this system, the science it will advance and its historical development, visit the DTEM page.

Related information:

Instruments

EMSL's environmental transmission electron microscope (ETEM) is a state-of-the-art, Cs-corrected field emission gun (FEG) scanning transmission...
Custodian(s): Libor Kovarik
Type of Instrument:
Microscope
The Helium Ion Microscope promises to advance biological, geochemical, biogeochemical, and surface/interface studies using its combined surface...
The JEOL JEM-3000SFF was designed for high-resolution cryogenic transmission electron microscopy (cryo-EM) of biological samples and expands EMSL/...
EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface...
Custodian(s): Igor Lyubinetsky
EMSL's aberration-corrected Titan 80-300™ scanning/transmission electron microscope (S/TEM) provides high-resolution imaging with sub-angstrom...
Custodian(s): Chongmin Wang, Scott Lea

Science Highlights

Posted: April 22, 2016
Scientists at Pacific Northwest National Laboratory, or PNNL, EMSL and the University of Washington collaborated to study rechargeable zinc-...
Posted: December 29, 2015
The Science A wide variety of microbes thrive at high temperatures such as those found in hot springs of Yellowstone National Park. Archaeal...
Posted: August 17, 2015
The Science With increasing emphasis on sustainable energy sources, lipid-derived biofuels have been proposed as a promising substitute for fossil...
Posted: March 30, 2015
The Science Lipids derived from oil-rich microorganisms such as bacteria, yeast and microalgae offer a promising source of renewable fuels and...
Posted: March 24, 2015
To understand a lithium battery at the nanoscale, scientists with EMSL and other organizations at the Department of Energy’s Joint Center for Energy...

Instruments

There are no related projects at this time.

EMSL’s Quiet Wing supports a wide range of research areas, including climate, biological, environmental and energy systems, of importance to the Department of Energy. It is among the most advanced quiet laboratories in the world for high-resolution imaging capabilities.

The Quiet Wing is a unique research environment housing a suite of ultrasensitive microscopy and scanning instruments. It was designed to help accelerate critical science by allowing state-of-the-art ultrasensitive microscopy equipment to operate at optimal resolution. A temperature-controlled facility, the wing’s design eliminates or reduces to a minimum the vibrations, acoustics and electromagnetic noise that can interfere with the resolution of ultrasensitive scientific instrumentation.

The 9,500-square-foot facility features eight quiet laboratory cells and a sample preparation area. The wing currently houses seven microscopy instruments and has room for one more. These microscopes are just a few of the extensive suite of microscopy instruments at EMSL available for scientific inquiry.

EMSL's microscopy capabilities, including those in the Quiet Wing, are available to the scientific community at typically no cost for openly published research. Scientists gain access to instruments and collaborate with onsite microscopy experts through a peer-reviewed proposal process. Learn more about becoming an EMSL user.

Learn more about each instrument and the science it advances on EMSL's YouTube channel and watch the video below on the Quiet Wing.

A new DTEM – Dynamic Transmission Electron Microscope – is under development at EMSL in collaboration with scientific colleagues at Pacific Northwest National Laboratory. It will be housed in the Quiet Wing. To learn more about this system, the science it will advance and its historical development, visit the DTEM page.

Related information:

Direct Delocalization for Calculating Electron Transfer in Fullerenes.

Abstract: 

A method is introduced for simple calculation of charge transfer between very large solvated organic dimers (fullerenes here) from isolated dimer calculations. The individual monomers in noncentrosymmetric dimers experience different chemical
environments, so that the dimers do not necessarily represent bulk-like molecules. Therefore, we apply a delocalizing bias directly to the Fock matrix of the dimer system, and verify that this is almost as accurate as self-consistent solvation. As large molecules like fullerenes have a plethora of excited states, the initially excited state orbitals are thermally populated, so that the rate is obtained as a thermal average over Marcus thermal transfers.

Citation: 
Arntsen CD, R Reslan, S Hernandez, Y Gao, and D Neuhauser.2013."Direct Delocalization for Calculating Electron Transfer in Fullerenes."International Journal of Quantum Chemistry 113(15):1885–1889. doi:10.1002/qua.24409
Authors: 
CD Arntsen
R Reslan
S Hernez
Y Gao
D Neuhauser
Capabilities: 
Facility: 
Instruments: 
Volume: 
Issue: 
Pages: 
Publication year: 
2013

Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen .

Abstract: 

Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare alloy nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions

Citation: 
Johnson GE, RJ Colby, MH Engelhard, DW Moon, and J Laskin.2015."Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen ."Nanoscale 7(29):12379-12391. doi:10.1039/C5NR03154K
Authors: 
H Mark
Julia Laskin
Johnson GE
RJ Colby
MH Engelhard
DW Moon
J Laskin
Instruments: 
Volume: 
7
Issue: 
29
Pages: 
12379-12391
Publication year: 
2015

Pages

Related Videos