
Best Practices for HPC Software
Developers Webinar Series

Session 4: Testing and Documenting Your Code
We will also give a half day tutorial on testing at SC16:

“Testing of HPC Scientific Software”
 Welcome! We will begin soon

• Make sure you get counted. Please visit http://bit.ly/hpcbp-s04
• We want this webinar to be interactive, and we encourage questions

• But we need to keep everyone’s mic muted (too many participants)
• Please use the Zoom Q&A tool to submit questions
• Or use type them into this Google Doc: http://bit.ly/hpcbp-qa
• Use the Zoom Chat tool for other issues

• Slides and a recording will be available from the OLCF training web site:
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

• We want to improve this series. Please send feedback to
HPCBestPractices+session04@gmail.com

2016-06-16

http://bit.ly/hpcbp-qa
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-5690 TR

Testing and Documenting your Code
Alicia Klinvex

Sandia National Labs
June 15, 2016

Outline

 Testing
 Why testing is important
 Types of tests
 Testing tips
 How Trilinos is tested
 Code coverage

 Documentation
 Why documentation is important
 Types of documentation
 How Trilinos is documented
 Documentation generators

TESTING

4

Why testing is important:
the protein structures of Geoffrey Chang
 Some inherited code flipped two columns of data, inverting

an electron-density map
 Resulted in an incorrect protein structure
 Resulted in 5 retracted publications

 One was cited 364 times

 Many papers and grant applications conflicting with his
results were rejected

5

A scientist's nightmare: Software problems lead to five retractions (Miller)

Why testing is important:
the 40 second flight of the Ariane 5
 Ariane 5: a European orbital launch vehicle meant to lift 20

tons into low Earth orbit
 Initial rocket went off course, started to disintegrate, then

self-destructed less than a minute after launch
 Seven variables were at risk of leading to an Operand Error

(due to conversion of floating point to integer)
 Four were protected

 Investigation concluded insufficient test coverage as one of
the causes for this accident

 Resulted in a loss of $370,000,000.

6

ARIANE 5 Flight 501 Failure (report by the Inquiry Board)

Why testing is important:
the Therac-25 accidents
 Therac-25: a computer-controlled radiation therapy machine
 Minimal software testing
 Race condition in the code went undetected
 Unlucky patients were struck with approximately 100 times

the intended dose of radiation, ~ 15,000 rads
 Error code indicated that no dose of radiation was given, so

operator instructed machine to proceed
 Documentation gave no indication that the frequent malfunctions of

the machine could place a patient at risk
 See also: why documentation is important

 Recalled after six accidents resulting in death and serious
injuries

7

An Investigation of the Therac-25 Accidents (Leveson & Turner)

Granularity of tests

 Unit tests
 Test individual functions or classes
 Build and run fast
 Localize errors

 Integration tests
 Test interaction of larger pieces of software

 System-level tests
 Test the full software system at the user interaction level

8

Types of tests

 Verification tests
 Does the code implement the intended algorithm correctly?
 Check for specific mathematical properties

 Acceptance tests
 Assert acceptable functioning for a specific customer
 Generally at the system-level

 Regression (no-change) tests
 Compare current observable output to a gold standard
 Must independently verify that the gold standard is correct

 Performance tests
 Focus on the runtime and resource utilization
 Nothing to do with correctness

 Installation tests
 Verify that the configure-make-install is working as expected

9

CSE testing challenges

 Floating point issues
 Different results

 On different platforms
 On different runs (due to multi-processor computation)

 Ill-conditioning can magnify these small differences
 Final solution may be different
 Number of iterations may be different

 Performing a diff is bad

 Non-unique solutions

10

CSE testing challenges

 Scalability testing
 Difficult to get accurate data on a shared machine
 Getting access to many processors on a parallel machine is expensive

 Many supercomputing facilities discourage routine scalability testing
 Large jobs may sit in the queue for quite some time

 How do you scale a problem for weak scaling studies?
 A more refined problem may not have the same condition number

11

Testing tips

 Ideal time to build a test suite is during development
 Ensures that new code does not break existing functionality

 Failing tests should help you identify what part of the code
needs to be fixed

 Software should be tested regularly
 Develop a consistent policy on dealing with failed tests

 Use an issue tracking system
 Add a regression test after the issue is fixed

 Run a regression test suite when checking in new code
 Avoid zero-diffing tests against gold standard output

 spiff (https://github.com/dontcallmedom/spiff)

12

https://github.com/dontcallmedom/spiff

What is Trilinos?

 A collection of libraries intended to be used as building blocks
for the development of scientific applications

 Organized into 66 packages
 Linear solvers
 Nonlinear solvers
 Eigensolvers
 And more!

 10,000+ commits
 135 contributors (according to github)
 Millions of lines of code

13

How is Trilinos tested?

 Trilinos has 1500 tests between its 66 packages
 Developers are strongly advised to run a checkin test script

when committing
 Detects which packages were modified by your commits
 Determines which packages you potentially broke
 Configures, builds, and tests those packages

 On success, pushes to repo
 On failure, reports why it failed

 Useful for ensuring your changes don’t break another package
 May take a while, but many people run it overnight

 Automated testing on a variety of different platforms

14

Why do we do automated testing if
everyone uses the checkin script?
 May test a different set of packages
 May test different environments

 Do your changes work with Intel compilers as well as GNU?
 Do your changes work on a mac?
 Do your changes work with CUDA?

 Identifies a small set of commits that could have broken a
build or test
 Average 12 commits per day
 Identifies the person who knows how to un-break it

 Bugs are easier to fix if caught early

15

Checkin test script examples

 Example 1: a harmless change to a comment
 Example 2: breaking the build
 Example 3: breaking some tests

16

Example 1: a harmless change

17

Example 1: a harmless change

18

Example 1: a harmless change

19

Note that the checkin script
correctly identified what

was modified.

Example 1: a harmless change

20

Configure, build, and test
passed for MPI_DEBUG

Example 1: a harmless change

21

We are ready to push
because all tests passed

Example 2: broken build

22

Missing semicolon at the
end of the class. This will

break the build

Example 2: broken build

23

The checkin script detected
that I broke the build

Example 2: broken build

24

Checkin script also creates
a log file with the error

Example 3: broken tests

25

Added a logic error to the
code.

Example 3: broken tests

26

The checkin script detected
that I broke several tests

Example 3: broken tests

27

The log file tells us which
tests were broken

Trilinos automated testing

28

testing.sandia.gov/cdash/viewSubProjects.php?project=Trilinos

Trilinos automated testing

29

Trilinos automated testing

30

 Several Amesos2 (direct solver) tests are broken.

 Are any of its dependencies broken?
 Yes, there is a broken Epetra (basic linear algebra) test
 Maybe this broke Amesos2

Trilinos automated testing

31

 Which tests were broken in Amesos2?

Trilinos automated testing

 If you may have broken something, you will get an email
about it

32

How do you motivate somebody to write all
those tests?

 Tests protect YOU from other people from breaking your
work
 If someone else’s changes break your code, they are responsible for

fixing it

 You may already have some
 Drivers for generating conference or paper results

 Just reduce the problem size
 User submitted bugs

 Ask for a file that reproduces the issue
 These make great regression tests

 Examples
 Add a pass/fail condition and you have a test

33

How do I determine what other tests I need?

 Code coverage tools
 Expose parts of the code that aren’t being tested
 gcov

 standard utility with the GNU compiler collection suite
 counts the number of times each statement is executed

 lcov
 a graphical front-end for gcov
 available at http://ltp.sourceforge.net/coverage/lcov.php

34

Similar tools exist for mac and windows

http://ltp.sourceforge.net/coverage/lcov.php

How to use lcov

 Compile and link your code with --coverage flag
 It’s a good idea to disable optimization

 Run your test suite
 Collect coverage data using lcov
 Generate html output using genhtml

35

A simple example

bool isEven(int x)
{

 if(x%2 == 0)

 return true;

 return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{

 int num = 8;

 if(isEven(num))

 std::cout << num << “ is an even number.\nTEST PASSED”;

 else

 std::cout << num << “ is an odd number.\nTEST FAILED”;

 return 0;

}
36

A simple example

 Compile and link with --coverage flag
 g++ --coverage evenExample.cpp -o
evenExample

 This creates a file called evenExample.gcno
 Run the test
 ./evenExample
 This creates a file called evenExample.gcda

 Collect coverage data using lcov
 lcov --capture --directory . --output-file
evenExample.info

 This creates evenExample.info
 Generate html output using genhtml
 genhtml evenExample.info --output-directory
evenHTML

 This generates html files in the directory evenHTML

37

A simple example

This is the file we’re testing

38

A simple example

We never tested this line of code
(which activates when x is odd)

39

Let’s add another test

bool isEven(int x)
{

 if(x%2 == 0)

 return true;

 return false;

}

#include<iostream>

#include “isEven.hpp”

int main()

{

 int num = 7;

 if(isEven(num))

 std::cout << num << “ is an even number.\nTEST FAILED”;

 else

 std::cout << num << “ is an odd number.\nTEST PASSED”;

 return 0;

}
40

A simple example

 Compile and link with --coverage flag
 g++ --coverage oddExample.cpp -o oddExample
 This creates a file called oddExample.gcno

 Run the test
 ./oddExample
 This creates a file called oddExample.gcda

 Collect coverage data for BOTH TESTS using lcov
 lcov --capture --directory . --output-file
twoExamples.info

 This creates twoExamples.info
 Generate html output using genhtml
 genhtml twoExamples.info --output-directory
totalHTML

 This generates html files in the directory totalHTML

41

A simple example

This is the file we’re testing

42

A simple example

We tested every line of this function
43

A real example - xSDKTrilinos

 Part of the Trilinos library, developed at SNL as part of the
IDEAS project

 Contains the interfaces between Trilinos, PETSc, and hypre
 Available at https://github.com/trilinos/xSDKTrilinos
 Ten automated tests are run nightly

 Six are actually examples that were converted into tests

 Did we leave anything out?

44

https://github.com/trilinos/xSDKTrilinos

A real example - xSDKTrilinos

 Step 1: Modify our CMake configuration file to use the
--coverage flag to compile and link
 -D CMAKE_CXX_FLAGS:STRING=“--coverage”
 -D CMAKE_C_FLAGS:STRING=“--coverage”
 -D CMAKE_EXE_LINKER_FLAGS:STRING=“--coverage”

45

A real example - xSDKTrilinos

 Build Trilinos (including xSDKTrilinos)
 ./do-configure

 make -j
 This will create a whole bunch of .gcno files
 This will also build the xSDKTrilinos tests because the

configure file included
 -D Trilinos_ENABLE_TESTS:BOOL=ON

 -D Trilinos_ENABLE_EXAMPLES:BOOL=ON

 -D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON

46

A real example - xSDKTrilinos

 Run the tests using ctest
 Note that this is not prohibitively slow

47

A real example - xSDKTrilinos

 All tests passed. Yay!
 This also created a bunch of .gcda files

48

A real example - xSDKTrilinos

 Collect coverage data for the tests using lcov
 lcov --capture --directory . --output-file
xSDKTrilinos.info

 This creates xSDKTrilinos.info
 lcov processes 634 gcda files in this step, so this does take a few

minutes

49

A real example - xSDKTrilinos

 Generate html output using genhtml
 genhtml xSDKTrilinos.info --output-directory
xSDKTrilinos

 This generates html files in the directory xSDKTrilinos
 This step takes a few minutes too

50

A real example - xSDKTrilinos

51

Let’s take a look at the solver interface.

A real example - xSDKTrilinos

52

A real example - xSDKTrilinos

53

Oops. I never tested the RIGHT preconditioning branch.

DOCUMENTATION

54

Why is documentation important?

 To identify the purpose of the software and its requirements
 To clarify what each component does, what is needed to

maintain it, and how it can be reused elsewhere
 To provide user support

 Minimizes unnecessary handholding of users

 To ensure that software is used within its region of validity
 Minimizes possibility of producing spurious scientific results

55

Categories of documentation

 Users guide
 Reference manual

 List of the interfaces and routines and explanation of functionality
 Can be generated automatically from code

 Readme files
 Installation guide
 Tutorials

56

All software needs documentation
Not all software needs a users guide

How does Trilinos handle
documentation?
 Each package does it differently
 User manuals

 MueLu (algebraic multigrid)
 AztecOO (Krylov solvers)
 Teuchos RCP (reference counted pointers)

 Publicly available tutorials, presentations, and slides
 Tpetra (MPI+X linear albebra)
 Kokkos*

 Well commented examples
 Automatically generated html documentation

57

Doxygen

 One approach to producing “reference manual”-like
documentation

 Automatically generates html documentation from comments
in source code

 Easy to update documentation when source code is updated
 doxywizard - GUI frontend for doxygen

58

A simple doxygen example

 Add some comments to isEven.hpp

59

A simple doxygen example

 Create an index page (index.doc)

60

A simple doxygen example

61

A simple doxygen example

62

A simple doxygen example

63

A simple doxygen example

64

A simple doxygen example

65

A simple doxygen example

66

A simple doxygen example

67

A simple doxygen example

68

A simple doxygen example

69

Summary

 Testing and documentation are very important
 There are many different types of tests that should be

included in your test suite
 Code coverage tools can help you figure out where existing

testing is insufficient
 Documentation does not have to mean “user manual”
 Tools such as doxygen can help you write documentation

70

Thanks for Participating!
• Make sure you get counted. Please visit http://bit.ly/hpcbp-s04
• We want to improve this series. Please send feedback to

HPCBestPractices+session04@gmail.com
• Slides and a recording will be available from the OLCF training web site:

https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Session 5: How the HPC Environment is Different from the Desktop (and Why)
Date: Wednesday, July 14, 2016
Time: 1:00-2:00 pm ET
Presenter: Katherine Riley, Argonne Leadership Computing Facility

Next Webinar

For updates, please register (if you haven’t already)
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

2016-06-16

SC16 Tutorial: “Testing of HPC Scientific Software”

https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

	Slide Number 1
	Testing and Documenting your Code
	Outline
	Testing
	Why testing is important:�the protein structures of Geoffrey Chang
	Why testing is important:�the 40 second flight of the Ariane 5
	Why testing is important:�the Therac-25 accidents
	Granularity of tests
	Types of tests
	CSE testing challenges
	CSE testing challenges
	Testing tips
	What is Trilinos?
	How is Trilinos tested?
	Why do we do automated testing if everyone uses the checkin script?
	Checkin test script examples
	Example 1: a harmless change
	Example 1: a harmless change
	Example 1: a harmless change
	Example 1: a harmless change
	Example 1: a harmless change
	Example 2: broken build
	Example 2: broken build
	Example 2: broken build
	Example 3: broken tests
	Example 3: broken tests
	Example 3: broken tests
	Trilinos automated testing
	Trilinos automated testing
	Trilinos automated testing
	Trilinos automated testing
	Trilinos automated testing
	How do you motivate somebody to write all those tests?
	How do I determine what other tests I need?
	How to use lcov
	A simple example
	A simple example
	A simple example
	A simple example
	Let’s add another test
	A simple example
	A simple example
	A simple example
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	A real example - xSDKTrilinos
	documentation
	Why is documentation important?
	Categories of documentation
	How does Trilinos handle documentation?
	Doxygen
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	A simple doxygen example
	Summary
	Slide Number 71

