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Outline 

 Testing 
 Why testing is important 
 Types of tests 
 Testing tips 
 How Trilinos is tested 
 Code coverage 

 Documentation 
 Why documentation is important 
 Types of documentation 
 How Trilinos is documented 
 Documentation generators 



TESTING 
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Why testing is important: 
the protein structures of Geoffrey Chang 
 Some inherited code flipped two columns of data, inverting 

an electron-density map 
 Resulted in an incorrect protein structure 
 Resulted in 5 retracted publications 

 One was cited 364 times 

 Many papers and grant applications conflicting with his 
results were rejected 
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A scientist's nightmare: Software problems lead to five retractions (Miller) 



Why testing is important: 
the 40 second flight of the Ariane 5 
 Ariane 5: a European orbital launch vehicle meant to lift 20 

tons into low Earth orbit  
 Initial rocket went off course, started to disintegrate, then 

self-destructed less than a minute after launch 
 Seven variables were at risk of leading to an Operand Error 

(due to conversion of floating point to integer) 
 Four were protected 

 Investigation concluded insufficient test coverage as one of 
the causes for this accident 

 Resulted in a loss of $370,000,000. 
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ARIANE 5 Flight 501 Failure (report by the Inquiry Board) 



Why testing is important: 
the Therac-25 accidents 
 Therac-25: a computer-controlled radiation therapy machine 
 Minimal software testing 
 Race condition in the code went undetected  
 Unlucky patients were struck with approximately 100 times 

the intended dose of radiation, ~ 15,000 rads 
 Error code indicated that no dose of radiation was given, so 

operator instructed machine to proceed 
 Documentation gave no indication that the frequent malfunctions of 

the machine could place a patient at risk 
 See also: why documentation is important 

 Recalled after six accidents resulting in death and serious 
injuries 
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An Investigation of the Therac-25 Accidents (Leveson & Turner) 



Granularity of tests 

 Unit tests 
 Test individual functions or classes 
 Build and run fast 
 Localize errors 

 Integration tests 
 Test interaction of larger pieces of software 

 System-level tests 
 Test the full software system at the user interaction level 
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Types of tests 

 Verification tests 
 Does the code implement the intended algorithm correctly? 
 Check for specific mathematical properties 

 Acceptance tests 
 Assert acceptable functioning for a specific customer 
 Generally at the system-level 

 Regression (no-change) tests 
 Compare current observable output to a gold standard 
 Must independently verify that the gold standard is correct 

 Performance tests 
 Focus on the runtime and resource utilization 
 Nothing to do with correctness 

 Installation tests 
 Verify that the configure-make-install is working as expected 
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CSE testing challenges 

 Floating point issues 
 Different results 

 On different platforms 
 On different runs (due to multi-processor computation) 

  Ill-conditioning can magnify these small differences 
 Final solution may be different 
 Number of iterations may be different 

 Performing a diff is bad 

 Non-unique solutions 
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CSE testing challenges 

 Scalability testing 
 Difficult to get accurate data on a shared machine 
 Getting access to many processors on a parallel machine is expensive 

 Many supercomputing facilities discourage routine scalability testing 
 Large jobs may sit in the queue for quite some time 

 How do you scale a problem for weak scaling studies? 
 A more refined problem may not have the same condition number 
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Testing tips 

 Ideal time to build a test suite is during development 
 Ensures that new code does not break existing functionality 

 Failing tests should help you identify what part of the code 
needs to be fixed 

 Software should be tested regularly 
 Develop a consistent policy on dealing with failed tests 

 Use an issue tracking system 
 Add a regression test after the issue is fixed 

 Run a regression test suite when checking in new code 
 Avoid zero-diffing tests against gold standard output 

 spiff (https://github.com/dontcallmedom/spiff) 
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https://github.com/dontcallmedom/spiff


What is Trilinos? 

 A collection of libraries intended to be used as building blocks 
for the development of scientific applications 

 Organized into 66 packages 
 Linear solvers 
 Nonlinear solvers 
 Eigensolvers 
 And more! 

 10,000+ commits 
 135 contributors (according to github) 
 Millions of lines of code 
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How is Trilinos tested? 

 Trilinos has 1500 tests between its 66 packages 
 Developers are strongly advised to run a checkin test script 

when committing 
 Detects which packages were modified by your commits 
 Determines which packages you potentially broke 
 Configures, builds, and tests those packages 

 On success, pushes to repo 
 On failure, reports why it failed 

 Useful for ensuring your changes don’t break another package 
 May take a while, but many people run it overnight 

 Automated testing on a variety of different platforms 
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Why do we do automated testing if 
everyone uses the checkin script? 
 May test a different set of packages 
 May test different environments 

 Do your changes work with Intel compilers as well as GNU? 
 Do your changes work on a mac? 
 Do your changes work with CUDA? 

 Identifies a small set of commits that could have broken a 
build or test 
 Average 12 commits per day 
 Identifies the person who knows how to un-break it 

 Bugs are easier to fix if caught early 
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Checkin test script examples 

 Example 1: a harmless change to a comment 
 Example 2: breaking the build 
 Example 3: breaking some tests 
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Example 1: a harmless change 
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Example 1: a harmless change 
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Example 1: a harmless change 
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Note that the checkin script 
correctly identified what 

was modified. 



Example 1: a harmless change 
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Configure, build, and test 
passed for MPI_DEBUG 



Example 1: a harmless change 
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We are ready to push 
because all tests passed 



Example 2: broken build 

22 

Missing semicolon at the 
end of the class.  This will 

break the build 



Example 2: broken build 
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The checkin script detected 
that I broke the build 



Example 2: broken build 
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Checkin script also creates 
a log file with the error 



Example 3: broken tests 
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Added a logic error to the 
code. 



Example 3: broken tests 
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The checkin script detected 
that I broke several tests 



Example 3: broken tests 
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The log file tells us which 
tests were broken 



Trilinos automated testing 
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testing.sandia.gov/cdash/viewSubProjects.php?project=Trilinos 



Trilinos automated testing 
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Trilinos automated testing 
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 Several Amesos2 (direct solver) tests are broken. 
 
 
 
 
 
 
 

 Are any of its dependencies broken? 
 Yes, there is a broken Epetra (basic linear algebra) test 
 Maybe this broke Amesos2 



Trilinos automated testing 
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 Which tests were broken in Amesos2? 



Trilinos automated testing 

 If you may have broken something, you will get an email 
about it 
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How do you motivate somebody to write all 
those tests? 

 Tests protect YOU from other people from breaking your 
work 
 If someone else’s changes break your code, they are responsible for 

fixing it 

 You may already have some 
 Drivers for generating conference or paper results 

 Just reduce the problem size 
 User submitted bugs 

 Ask for a file that reproduces the issue 
 These make great regression tests 

 Examples 
 Add a pass/fail condition and you have a test 
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How do I determine what other tests I need? 

 Code coverage tools 
 Expose parts of the code that aren’t being tested 
 gcov 

 standard utility with the GNU compiler collection suite 
 counts the number of times each statement is executed 

 lcov 
 a graphical front-end for gcov 
 available at http://ltp.sourceforge.net/coverage/lcov.php  
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Similar tools exist for mac and windows 

http://ltp.sourceforge.net/coverage/lcov.php


How to use lcov 

 Compile and link your code with --coverage flag 
 It’s a good idea to disable optimization 

 Run your test suite 
 Collect coverage data using lcov 
 Generate html output using genhtml 
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A simple example 

bool isEven(int x) 
{ 

  if(x%2 == 0) 

    return true; 

  return false; 

} 

#include<iostream> 

#include “isEven.hpp” 

 

int main() 

{ 

  int num = 8; 

 

  if(isEven(num)) 

    std::cout << num << “ is an even number.\nTEST PASSED”; 

  else 

    std::cout << num << “ is an odd number.\nTEST FAILED”; 

 

  return 0; 

} 
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A simple example 

 Compile and link with --coverage flag 
 g++ --coverage evenExample.cpp -o 
evenExample 

 This creates a file called evenExample.gcno 
 Run the test 
 ./evenExample 
 This creates a file called evenExample.gcda 

 Collect coverage data using lcov 
 lcov --capture --directory . --output-file 
evenExample.info 

 This creates evenExample.info 
 Generate html output using genhtml 
 genhtml evenExample.info --output-directory 
evenHTML 

 This generates html files in the directory evenHTML 
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A simple example 

This is the file we’re testing 
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A simple example 

We never tested this line of code 
(which activates when x is odd) 
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Let’s add another test 

bool isEven(int x) 
{ 

  if(x%2 == 0) 

    return true; 

  return false; 

} 

#include<iostream> 

#include “isEven.hpp” 

 

int main() 

{ 

  int num = 7; 

 

  if(isEven(num)) 

    std::cout << num << “ is an even number.\nTEST FAILED”; 

  else 

    std::cout << num << “ is an odd number.\nTEST PASSED”; 

 

  return 0; 

} 
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A simple example 

 Compile and link with --coverage flag 
 g++ --coverage oddExample.cpp -o oddExample 
 This creates a file called oddExample.gcno 

 Run the test 
 ./oddExample 
 This creates a file called oddExample.gcda 

 Collect coverage data for BOTH TESTS using lcov 
 lcov --capture --directory . --output-file 
twoExamples.info 

 This creates twoExamples.info 
 Generate html output using genhtml 
 genhtml twoExamples.info --output-directory 
totalHTML 

 This generates html files in the directory totalHTML 
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A simple example 

This is the file we’re testing 
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A simple example 

We tested every line of this function 
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A real example - xSDKTrilinos 

 Part of the Trilinos library, developed at SNL as part of the 
IDEAS project 

 Contains the interfaces between Trilinos, PETSc, and hypre 
 Available at https://github.com/trilinos/xSDKTrilinos 
 Ten automated tests are run nightly 

 Six are actually examples that were converted into tests 

 Did we leave anything out? 
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https://github.com/trilinos/xSDKTrilinos


A real example - xSDKTrilinos 

 Step 1: Modify our CMake configuration file to use the  
--coverage flag to compile and link 
 -D CMAKE_CXX_FLAGS:STRING=“--coverage” 
 -D CMAKE_C_FLAGS:STRING=“--coverage” 
 -D CMAKE_EXE_LINKER_FLAGS:STRING=“--coverage” 
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A real example - xSDKTrilinos 

 Build Trilinos (including xSDKTrilinos) 
 ./do-configure  

 make -j 
 This will create a whole bunch of .gcno files 
 This will also build the xSDKTrilinos tests because the 

configure file included 
 -D Trilinos_ENABLE_TESTS:BOOL=ON  

 -D Trilinos_ENABLE_EXAMPLES:BOOL=ON 

 -D Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES=ON 
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A real example - xSDKTrilinos 

 Run the tests using ctest 
 Note that this is not prohibitively slow 
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A real example - xSDKTrilinos 

 All tests passed.  Yay! 
 This also created a bunch of .gcda files  
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A real example - xSDKTrilinos 

 Collect coverage data for the tests using lcov 
 lcov --capture --directory . --output-file 
xSDKTrilinos.info 

 This creates xSDKTrilinos.info 
 lcov processes 634 gcda files in this step, so this does take a few 

minutes 
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A real example - xSDKTrilinos 

 Generate html output using genhtml 
 genhtml xSDKTrilinos.info --output-directory 
xSDKTrilinos 

 This generates html files in the directory xSDKTrilinos 
 This step takes a few minutes too 
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A real example - xSDKTrilinos 
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Let’s take a look at the solver interface. 



A real example - xSDKTrilinos 
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A real example - xSDKTrilinos 
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Oops.  I never tested the RIGHT preconditioning branch. 



DOCUMENTATION 
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Why is documentation important? 

 To identify the purpose of the software and its requirements 
 To clarify what each component does, what is needed to 

maintain it, and how it can be reused elsewhere 
 To provide user support 

 Minimizes unnecessary handholding of users 

 To ensure that software is used within its region of validity 
 Minimizes possibility of producing spurious scientific results 
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Categories of documentation 

 Users guide 
 Reference manual 

 List of the interfaces and routines and explanation of functionality 
 Can be generated automatically from code 

 Readme files 
 Installation guide 
 Tutorials 
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All software needs documentation 
Not all software needs a users guide 



How does Trilinos handle 
documentation? 
 Each package does it differently 
 User manuals 

 MueLu (algebraic multigrid) 
 AztecOO (Krylov solvers) 
 Teuchos RCP (reference counted pointers) 

 Publicly available tutorials, presentations, and slides 
 Tpetra (MPI+X linear albebra) 
 Kokkos* 

 Well commented examples 
 Automatically generated html documentation 
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Doxygen 

 One approach to producing “reference manual”-like 
documentation  

 Automatically generates html documentation from comments 
in source code 

 Easy to update documentation when source code is updated 
 doxywizard - GUI frontend for doxygen 

58 



A simple doxygen example 

 Add some comments to isEven.hpp 

59 



A simple doxygen example 

 Create an index page (index.doc) 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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A simple doxygen example 
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Summary 

 Testing and documentation are very important 
 There are many different types of tests that should be 

included in your test suite 
 Code coverage tools can help you figure out where existing 

testing is insufficient 
 Documentation does not have to mean “user manual” 
 Tools such as doxygen can help you write documentation 
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Thanks for Participating! 
• Make sure you get counted. Please visit http://bit.ly/hpcbp-s04 
• We want to improve this series. Please send feedback to 

HPCBestPractices+session04@gmail.com 
• Slides and a recording will be available from the OLCF training web site: 

https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers 

Session 5: How the HPC Environment is Different from the Desktop (and Why) 
Date: Wednesday, July 14, 2016 
Time: 1:00-2:00 pm ET 
Presenter: Katherine Riley, Argonne Leadership Computing Facility 

Next Webinar 

For updates, please register (if you haven’t already) 
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers 

2016-06-16 
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