Supercomputers – Why are they different?

Katherine Riley Argonne Leadership Computing Facility

Argonne National Laboratory July 2016

OUTLINE

- Unique resources
- Science driven design
- Ripples
- Continuous improvement

IPAD VS SUPERCOMPUTER

IPad 2 ~= Cray-2 from 1985

- 1.9, 1.5-1.65 GFLOP/s
- 2GB vs 64GB memory
- Is IPad 2 a supercomputer?
 - Just an old one?
 - Forefront of tech

TOP 1% HAS A LOT OF THE COMPUTE POWER

DOE'S OFFICE OF SCIENCE COMPUTATION USER FACILITIES

NERSC Edison is 2.57 PF

ALCF Mira is 10 PF

OLCF Titan is 27 PF

- DOE is leader in open High-Performance Computing
- Provide the world's most powerful computational tools for open science
- Access is free to researchers who publish
- Boost US competitiveness
- Attract the best and brightest researchers

SCIENCE DRIVEN DESIGN

- Mission need from high impact science drivers
- Machine design proposals include application tests
- Science based project performance parameters

- Collaboration with vendors driven by science applications
- Early science programs to test and evaluate

https://asc.llnl.gov/CORAL-benchmarks/

SUPERCOMPUTER TIMELINE

REAL IMPACTS

- Memory BW & footprint
- Compute node capability
- IO
- Software stack

CANNOT AFFORD WEAK LINKS

- Performance does matter
- Machine is only as fast as the slowest component
- Reducing overall capability reduces ability to delivery mission

- Reduce interconnect?
 - Less scaling
 - More contention
- Reduce memory footprint?
 - Limits science
- Reduce memory bandwidth?
 - Less performance

SCALE JUMPS TOUGH: COMPLEXITY

Desktop

Work Group

SCALE JUMPS TOUGH: COMPLEXITY

 Science driven design has constraints
 Chain or ripple, there are consequences

Group

Supercomputer Mira: 49,152 nodes, 786,432 cores

COMMON CHALLENGES

- Memory per task
- Scaling
- Managing data
- Portability
- Challenge for OPS
- Authentication
- Programming language/model availability

- Batch queuing
- File transfer
- Scaling
- Compiler capabilities
- Libraries at scale
- System calls/compute node capabilities
- Contention

HIGH LEVEL FACILITY DIAGRAM

HIGH LEVEL FACILITY DIAGRAM

HARDWARE RIPPLES

- Scaling for O(1K) is not
 Exposing OPS the same for O(10K) or O(100K)
 - Network technology and software
 - Jitter (software)
 - Application capability

- - Parallelism
 - Software stack
- I/O
 - Portability
 - Managing

SOFTWARE RIPPLES

- Bleeding edge HW requires clever SW solutions
- Third party tools need to scale to be functional

- Compute OS functionality
 - Jitter
 - Performance
- Behavior of common libraries varies, e.g. MPI

SOFTWARE STACK

- All crucial and specialized for a system
- Immediate high impact touch by application
- Application impact
- Some apps will notice

DESIGN POINT FOR PROGRAMMING MODELS

Program Model Target	Past PMs a	Now & Future
Cost	FLOPS	Data movement
Memory Scaling	BW, byte/FLOP	Tiered BW speeds, OPS/byte
Locality	MPI (+X) Off-node costs ok	MPI+X+Y+ Off-node cost growing
Concurrency	Node count growth, Node concurrency slow	Node count shrinking, Node concurrency growing
Uniformity	Homogenous	Heterogeneous
Reliability	Hardware Issue	Whose Issue is It? (System Software)
Power	Operational/Facility Plan	+System software

APPLICATION RIPPLES

- Science applications are about performance
 - Time to solution, not speed of opening PPT
- Development environment

- New capabilities invite new science
- Programming models and languages

CONTAINERS STILL STARTING

Promising but need to investigate efficacy

- Jitter and overhead for performance
- Exposure to optimized libraries
- Scalability

IDEAS FOR PATHS FORWARD

Data

Improved tools, algorithms, approaches

Computational Environment

- New use models: in-time, real-time, complex workflows, streaming, coscheduling, more in-situ
- Portability and Performance
- Diverse environments and requirements for access
- Programming models and runtime systems

- Data discovery, deep/machine learning, etc
- Data management, provenance, & storage
- Data where you need it when you need it – all tiers of data

Community Involvement

- Education and training
- Standards committees
- Training materials, best practices, examples, etc.

SUMMARY

- Biggest supercomputers are rare beasts
- Science plays a large role in design

- Everything counts in design
- There is an application challenge
- Facilities and DOE working on improvements

