

1. Many Core vs Multi Core

2. Performance Optimization Concepts for Many Core

3. Performance Optimization Strategy for Many Core

4. Example Case Studies

• NERSC’s Cori will begin to transition the
workload to more energy efficient
architectures

• Cray XC system with over 9300 Intel Knights
Landing (Xeon-Phi) compute nodes

– Self-hosted, (not an accelerator) manycore
processor with 68 cores per node

– On-package high-bandwidth memory

System named after Gerty Cori,
Biochemist and first American woman to
receive the Nobel prize in science.

Edison (Multi-Core):
● 5000+ Ivy Bridge Nodes
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision Operations
per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Many-Core):
● 9000+ Knights Landing Nodes
● 68 Physical Cores Per CPU
● Up to 272 Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision Operations
per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
 < 2 GB of Slow Memory Per Core

● Fast Memory has ~ 4-5x DDR4
Bandwidth

Need to explicitly consider both inter and on-node
parallelism in application.

Existing applications may suffer from:
- Memory overhead due to duplicated data in traditional

MPI tasks
- Lack of SIMD/Vectorization expressiveness in app.
- Potential MPI latency in all-to-all communication patterns

Possible Solutions:
MPI+MPI, MPI+OpenMP, PGAS (MPI+PGAS), Task Based
Programming

PARATEC computes parallel
FFTs across all processors.

Involves MPI all-to-all
communication (small
messages, latency bound).

Reducing the number of MPI
tasks in favor OpenMP
threads makes large
improvement in overall
runtime.

Figure Courtesy of Andrew Canning

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

 do i = 1, n
 a(i) = b(i) + c(i)
 enddo

 do i = 1, n
 a(i) = a(i-1) + b(i)
 enddo

 do i = 1, n
 if (a(i) < x) cycle
 if (a(i) > x) …
 enddo

for (many iterations) {
 … many flops …
 et = exp(outcome1)
 tt = pow(outcome2,3)
 IN = IN * et +tt
}

for (many iterations) {
 … many flops …
 et = exp(outcome1)
 tt = pow(outcome2,3)
 IN = IN * et +tt
}

for (many iterations) {
 … many flops …
 et(i) = exp(outcome1)
 tt(i) = pow(outcome2,3)
}

for (many iterations) {
 IN = IN * et(i) + tt(i)
}

for (many iterations) {
 … many flops …
 et = exp(outcome1)
 tt = pow(outcome2,3)
 IN = IN * et +tt
}

for (many iterations) {
 … many flops …
 et(i) = exp(outcome1)
 tt(i) = pow(outcome2,3)
}

for (many iterations) {
 IN = IN * et(i) + tt(i)
}

30% speed up for entire application!

~40% speed up
 for kernel

Consider the following loop:

Assume, n & m are very large such that a & b don’t fit into
cache.

Then,

During execution, the number of loads From DRAM is

n*m + n

Consider the following loop:

Assume, n & m are very large such that a & b don’t fit into
cache.

Then,

During execution, the number of loads From DRAM is

n*m + n

Requires 8 bytes loaded from DRAM per FMA (if supported). Assuming 100 GB/s bandwidth on
Edison, we can at most achieve 25 GFlops/second (2 Flops per FMA)

Much lower than 460 GFlops/second peak on Edison node. Loop is memory bandwidth bound.

CPU

L1 C
ache

L2 C
ache

CPU

L1 C
ache

L2 C
ache

L3 C
ache

CPU

L1 C
ache

L2 C
ache

...

DRAM

Loads From DRAM:

n*m + n
Loads From DRAM:

m/block * (n+block)
= n*m/block + m

Improving Memory Locality. Reducing bandwidth required.

- 24 -

MPI/OpenMP
Scaling Issue

IO bottlenecks

Use Edison to
Test/Add OpenMP

Improve Scalability.
Help from

NERSC/Cray COE
Available.

Utilize High-Level
IO-Libraries. Consult

with NERSC about
use of Burst Buffer.

Utilize
performant /

portable
libraries

The Dungeon:
Simulate kernels on KNL.
Plan use of on package

memory, vector
instructions.

The Ant Farm!

Communication
dominates beyond
100 nodes

Code shows no
improvements
when turning on
vectorization

OpenMP
scales only to
4 Threads

large cache
miss rate

50% Walltime
is IO

Compute intensive
doesn’t vectorize

Can you
use a

library?
Create micro-kernels or

examples to examine
thread level

performance,
vectorization, cache use,

locality.

Increase
Memory
Locality

Memory bandwidth
bound kernel

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-Packing
?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual
Threads as
Possible (>

240 Per Node
on Cori)

Make
Algorithm
Changes

YesYes

Yes Yes

No

No No

No

The Ant Farm Flow Chart

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-Packing
?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual
Threads as
Possible (>

240 Per Node
on Cori)

Make
Algorithm
Changes

Yes Yes

No

No No

No

1. Determine your roofline position:
http://www.nersc.gov/users/application-performance/me
asuring-arithmetic-intensity/

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Measure memory
bandwidth usage in
VTune. (Next Talk)

Compare to Stream
GB/s.

If 90% of stream, you
are memory bandwidth

bound.

If less, more tests need
to be done.

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-Packing
?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

YesYes

No No

Run Example
in “Half

Packed” Mode

 aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run
has access to more bandwidth

If your performance changes, you are at least partially memory bandwidth bound

If your performance changes, you are at least partially memory bandwidth bound

Run Example
in “Half

Packed” Mode

 aprun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run
has access to more bandwidth

aprun --p-state=2400000 ... VS aprun --p-state=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t
reduce memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example
at “Half Clock”

Speed

What to do?

1. Try to improve memory locality,
 cache reuse

2. Identify the key arrays leading to high memory bandwidth usage and make sure they
are/will-be allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major

OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization
in vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

High latency instructions : Complex-Division (without -fp model fast=2)

You may be memory latency bound (or you may be spending all your time in IO and Communication).

If running with hyper-threading on Edison improves performance, you *might* be
latency bound:

If you can, try to reduce the number of memory requests per flop by accessing
contiguous and predictable segments of memory and reusing variables in cache as
much as possible.

On Cori, each core will support up to 4 threads. Use them all.

 aprun -j 2 -n 48 …. aprun -n 24 ….VS

★
★

★

Distributed Data

Overhead Data

MPI Task 1

Distributed Data

Overhead Data

MPI Task 2

Distributed Data

Overhead Data

MPI Task 3

…

In house code (I’m one of main developers). Use as “prototype” for App
Readiness.

Significant Bottleneck is large matrix reduction like operations. Turning arrays
into numbers.

Optimization process for Kernel-C (Sigma
code):

1. Refactor (3 Loops for MPI, OpenMP,
Vectors)

2. Add OpenMP
3. Initial Vectorization (loop reordering,

conditional removal)
4. Cache-Blocking
5. Improved Vectorization
6. Hyper-threading

ngpown typically in
100’s to 1000s. Good
for many threads.

ncouls typically in
1000s - 10,000s.
Good for
vectorization.

Original inner loop.
Too small to
vectorize!

Attempt to save work
breaks vectorization
and makes code
slower.

!$OMP DO reduction(+:achtemp)
 do my_igp = 1, ngpown
 ...
 do iw=1,nfreq ! nfreq is 3

 scht=0D0
 wxt = wx_array(iw)

 do ig = 1, ncouls

 !if (abs(wtilde_array(ig,my_igp) * eps(ig,my_igp)) .lt. TOL) cycle

 wdiff = wxt - wtilde_array(ig,my_igp)
 delw = wtilde_array(ig,my_igp) / wdiff
 ...
 scha(ig) = mygpvar1 * aqsntemp(ig) * delw * eps(ig,my_igp)
 scht = scht + scha(ig)

 enddo ! loop over g
 sch_array(iw) = sch_array(iw) + 0.5D0*scht

 enddo

 achtemp(:) = achtemp(:) + sch_array(:) * vcoul(my_igp)

 enddo

The loss of L3 on MIC makes locality more important.

Why KNC worse than Haswell for GPP Kernel?

• 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

 !$OMP DO

 do my_igp = 1, ngpown

 do iw = 1 , 3

 do ig = 1, igmax

 load wtilde_array(ig,my_igp) 819 MB, 512KB per row

 load aqsntemp(ig,n1) 256 MB, 512KB per row

 load I_eps_array(ig,my_igp) 819 MB, 512KB per row

 do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

Why KNC worse than Haswell for GPP Kernel?

• 2S Haswell 27.9s KNC 39.9s (Bandwidth bound on KNC but not on Haswell)

 !$OMP DO

 do my_igp = 1, ngpown

 do igbeg = 1, igmax, igblk

 do iw = 1 , 3

 do ig = igbeg, min(igbeg + igblk,igmax)

 load wtilde_array(ig,my_igp) 819 MB, 512KB per row

 load aqsntemp(ig,n1) 256 MB, 512KB per row

 load I_eps_array(ig,my_igp) 819 MB, 512KB per row

 do work (including divide)

Required Cache size to reuse 3 times:

1536 KB

L2 on KNL is 512 KB per core
L2 on Has. is 256 KB per core

L3 on Has. is 3800 KB per core

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

Why Complex Divides so Slow?

Found significant x87 instructions from 1/complex_number instead of AVX/AVX-512

Can significantly speed up by

a) Doing complex divide manually

Or

b) Using -fp-model fast=2

High Level Lessons

1. Optimizing code is not always straightforward. It is a continual discovery
process that involves many sequential and coupled changes.

2. Use profiling tools to find and characterize hotspots.

3. Understanding bandwidth and compute limitations of hotspots are key to
deciding how to improve code.

KNL DDR performance saturates at around 50 threads,
becomes memory bandwidth limited.

KNL MCDRAM performance beats dual socket Haswell
by 63%.

Why Complex Divides so Slow?

Code performance now limited by complex divides

why??

For complex division in performance critical loop, I had already removed the explicit complex divide but what is
faster?

a) c =1 / c vs. b)

c/d) Compiling with/without -fp-model fast=2

r = c * conjg(c)
r = 1 / r
c = conjg(c) * r

Real-Division (with or without -fp model fast=2)

Complex-Division (with -fp model fast=2)

Thread Activity

?
Approximation:

a. Real Division

b. Complex Division

c. Complex Division
+ -fp-model fast=2

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds

Approximation:

a. Real Division

b. Complex Division

c. Complex Divsion +
-fp-model=fast

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds

Approximation:

a. Real Division

b. Complex Division

c. Complex Division +
-fp-model fast=2

d. Complex Division +
-fp-model=fast=2 +
!dir$ nounroll

Wall Time:

6.37 seconds

4.99 seconds

5.30 seconds

4.89 seconds

Overall Improvement Notes

BGW GPP Kernel 0-10% Pretty optimized to begin with. Thread scalability improved by fixing ifort allocation performance.
BGW FF Kernel 2x-4x Unoptimized to begin with. Cache reuse improvements
BGW Chi Kernel 10-30% Moved threaded region outward in code
BGW BSE Kernel 10-50% Created custom vector matmuls

ifort
ifort

(Nathan)

Breakdown of Application Hours
on Hopper and Edison 2013

