
Best Practices for HPC Software
Developers Webinar Series

Session 3: Distributed Version Control and
Continuous Integration Testing

Welcome! We will begin soon
• Make sure you get counted. Please visit http://bit.ly/hpcbp-s03
• We want this webinar to be interactive, and we encourage questions

• But we need to keep everyone’s mic muted (too many participants)
• Please use the Zoom Q&A tool to submit questions
• Or use type them into this Google Doc: http://bit.ly/hpcbp-qa
• Use the Zoom Chat tool for other issues

• Slides and a recording will be available from the OLCF training web site:
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

• We want to improve this series. Please send feedback to
HPCBestPractices+session03@gmail.com

http://bit.ly/hpcbp-qa
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Overview
• What is version control (and why do we care)?

• Centralized vs distributed version control

• Git: motivation, basic concepts, usage, learning resources

• GitHub as a collaborative development platform

• Tracking progress and prioritizing issues

• Pull requests as a mechanism for code changes

• Continuous integration

I am not going to

• teach you everything about Git(!)

• give you a translation chart from SVN to Git

• tell you how you should be running your projects

I will
• attempt to convince you that you need to use

version control for your software projects

• give you some resources to learn more

• show you some examples of successful software
development strategies

• hopefully show you something you haven’t seen
before

This webinar covers
a lot of ground.

• These topics belong to an area (software
engineering practices) that is not part of the formal
training of most “computational scientists.”

• I don’t know what you know, so I’m just trying to
make sure you’ve seen these ideas.

• Don’t worry about absorbing all of this at once.

• Sorry if some of this is old news for some of you.

Version control is an essential
component in software development.
• Also called “source code control,” “revision control,” “source

code versioning”

• Has been used by software developers for decades

• Source code lives in one or more repositories (repos)
available to team members/contributors.

• Developers make changes, incorporate changes from
collaborators, merge changes into the “master” version of
code in the repository.

• A repo is a computational scientist’s laboratory notebook.

Version control is an essential
component in software development.
• Establishes a common context for code contributions

and the exchange of ideas

• Establishes a chronological sequence of events

• Serves as “ground truth” for a software project

• If you don’t have a common reference for your source
code, there is nothing to for your team to discuss.

• Results from uncontrolled code are not reproducible.

Sharing code with tarballs / file sharing
is a recipe for disaster

• Recall your most frustrating document-sharing
experience…

• … and imagine it continuing for months or years,
with a changing cast of characters, with an ever-
expanding set of documents.

• (It doesn’t work.)

Sharing code with
version control is easy

• A repo can tell you exactly what version you are
looking at (with a unique identifier)…

• … and identify any local changes you have made…

• … so that everyone can agree on whether they are
looking at the same thing.

• If there are conflicts, your version control system
will tell you, and you will need to resolve them.

“What if I’m developing
software by myself?”

• Version control offers you the same advantages/
legitimacy of a laboratory notebook

• If you’re developing your software on more than one
machine, you still need to keep it consistent across
these machines.

• If you want to collaborate with someone,
congratulations! You’re now in the same boat as
software teams.

The simplest version control
systems are centralized.

• There is one repository containing the master version (the “trunk”) of the
source code.

• Everyone syncs with this repository, checks out files, changes them, and
commits these changes.

• People must cooperate to make sure their changes don’t conflict with each
other.

• Simple, but limited.

• Most centralized systems (SCCS, RCS, CVS, SVN) don’t allow the
creation of separate development branches (though some fake it)

• Requires coordination to keep people from stepping on each other’s
toes.

Centralized version control

(Courtesy Michael Ernst,
University of WA)

More recently, distributed version
control systems (DVCS) have emerged.

• Everyone has a copy of the entire repo and its history(!)

• There is a “main” repo, agreed upon by convention.

• People typically work in development branches, with
their changes isolated from others until merges are
performed.

• Greater flexibility for design development procedures.

• Greater complexity (more concepts, fewer set rules).

Distributed version control

(Courtesy Michael Ernst,
University of WA)

Git and Mercurial are the
most popular DCVS tools.

• Git was written by Linus Torvalds, who hated Subversion,
and has an interface that is alien to SVN users.

• Mercurial caters to Subversion veterans, with similar
command syntax.

• Both support similar features.

• Git focuses on power, flexibility, and correctness, while
Mercurial favors ease of use.

• More teams are using Git than Mercurial these days.

A version control tool is
just a tool.

• It will not allow you to write code without communicating
with others (including Future You).

• It does not define a process for developing software by
yourself or on a team.

• You/your team should choose an approach based on the
needs of your project and staff, and a tool that will support
this approach.

• DVCS are interesting because they accommodate a wider
range of approaches to software development. Even so,
some still prefer centralized version control.

Software teams need to
think about their process.

• Team software development is hard (because
collaborative work in general is hard).

• Different teams have different needs.

• What should be easy (happens often)?

• What can be more complicated (happens rarely)?

• Designing a development process takes time, but
pays for itself over time.

Let’s talk about Git!
• Git is difficult to learn without putting in some time.

• The command syntax is pretty confusing.

• Git evangelists sometimes talk about “the DAG” as if
everyone knows what one of those is.

• It’s difficult to understand how Git works without
knowing the underlying concepts.

• Teams that use Git well often have one or more “Git
people” that help the others.

Git can definitely help you do
what you want to do, and it works.
• It’s usually easy to fix mistakes if you find them early.

• Operations are not left in an intermediate state unless
they can’t be finished.

• It can support arbitrarily elaborate workflows.

• It doesn’t get in your way once you know what you’re
doing.

• Perversely, it’s easier to learn Git (and DVCS in
general) if you haven’t used SVN/CVS.

Git nouns and verbs
• Repos

• Clones/cloning of repos (making a copy of a repo)

• Commits/committing within repos (making code changes)

• Branches/branching within repos (isolated development)

• Remotes: references to other repos

• Pulls/pulling changes from one repo to another

• Pushes/pushing changes from one repo to another

• Revisions <—> commits (hashes)

• Workspace (index)

• History / the graph / the “DAG”

Git mechanics:
creating a new repo
% mkdir example
% cd example
% echo “This is file A” > A
% echo “This is file B” > B
% ls
% git init
% git status

Git mechanics:
adding files

% git add A
% git status
% git add B
% git status
% git commit -am “First commit.”
% git status

Git mechanics:
changing files

% echo “ xtra stuff” >> A
% git status
% git diff
% git checkout A
% git status
% echo “ Xtra stuff” >> A
% git commit -am “Xtra A stuff”

Git mechanics:
using the log/history
% git log
% git log —graph
% git show HEAD
% git show HEAD~1
% git reset —hard HEAD~1
% git log

(Long dashes are double dashes)

Git mechanics:
creating a new branch

% git branch newA
% git status
% git branch
% git checkout newA
% git status
% echo “New A stuff” >> A
% git diff
% git commit -am “New A stuff”
% git log

Git mechanics:
merging the branch
% git checkout master
% git status
% git log
% git merge newA
% git log
% git branch -d newA

Git mechanics:
remotes

Git mechanics:
remotes

% git remote -v
% git remote add upstream http://
www.example.com/example-us.git
% git remote add downstream http://
www.example.com/example-ds.git
% git remote -v
% git pull upstream master
% git push downstream master

http://www.example.com

It’s a good time to learn Git.
• Tutorials

• Getting Git Right: 
https://www.atlassian.com/git/

• Interactive play space from Code School:  
https://try.github.io/levels/1/challenges/1

• Exploring Git’s branching model: 
http://learngitbranching.js.org/

• Video course:  
https://www.codeschool.com/courses/git-real

• Git: The Simple Guide:  
http://rogerdudler.github.io/git-guide/

https://www.atlassian.com/git/
https://try.github.io/levels/1/challenges/1
http://learngitbranching.js.org/
https://www.codeschool.com/courses/git-real
http://rogerdudler.github.io/git-guide/

It’s a good time to learn Git.
• References

• “The Git book” 
https://git-scm.com/book/en/v2

• Learning Version Control With Git 
https://www.git-tower.com/learn/git/ebook/en/command-line/introduction

• “The Git Reference” 
http://gitref.org

• Git Magic 
http://www-cs-students.stanford.edu/~blynn/gitmagic/ch01.html

• Git Cheatsheet 
http://www.ndpsoftware.com/git-cheatsheet.html

https://git-scm.com/book/en/v2
https://www.git-tower.com/learn/git/ebook/en/command-line/introduction
http://gitref.org
http://www-cs-students.stanford.edu/~blynn/gitmagic/ch01.html
http://www.ndpsoftware.com/git-cheatsheet.html

It’s a good time to learn Git.
• Tools

• Tower (Mac OS X) 
https://www.git-tower.com/

• Tortoise Git (Windows) 
https://tortoisegit.org/

• Editor / IDE integration

• Magit (emacs)

• Fugitive (vim)

• (your favorite IDE here)

https://www.git-tower.com/
https://tortoisegit.org/

It’s a good time to learn Git.
• Check out offerings in your local community!

• Git/software engineering “bootcamps,” often
cheap or free

• Software workshops / conferences

• Your CS/IS department would probably love to tell
you more about this stuff

• You don’t need to learn it all by yourself!

If you decide to use Git,
check out GitHub.

• http://www.github.com

• Free repositories for Open Source projects

• Implements several helpful process “building blocks” (in
easy-to-use forms)

• Pull requests

• Forks

• Includes some simple niceties (issue tracker, wiki, pretty
log/graph visualizations)

http://www.github.com

If you decide to use Git,
check out GitHub.

• Integrates with several interesting services

• JIRA / Confluence (project management tools)

• Slack / HipChat (team communication tools)

• Travis CI (continuous integration)

• many others

• Other similar services exist (Bitbucket, GitLab, …)

• Mostly differ in how payment plans are organized, service
integrations offered

GitHub provides some useful items
for collaborative development.

• Issue tracking: a database for bugs and feature
requests

• Fork: a clone of a repository, to be used for a
specific purpose (e.g., by a single developer, or to
create an alternative implementation of a piece of
software)

• Pull request: a formal mechanism for reviewing a
set of changes to be merged into the master branch

Sample GitHub project

https://github.com/jnjohnsonlbl/example

% git clone https://github.com/jnjohnsonlbl/example.git

https://github.com/jnjohnsonlbl/example

Issue tracker

https://github.com/jnjohnsonlbl/example

https://github.com/jnjohnsonlbl/example

A fork is just a clone of a repo
with its own identity on GitHub.
• Useful if you are doing work that requires more

isolation, or if you have your own process and don’t
want to inflict it upon others.

• Can be used to submit changes/fixes to repos for
which you don’t have direct write access.

• Use with caution if your team isn’t using forks as
part of their process.

Fork the example repo
• Create a GitHub account

• Log into your account

• Navigate to https://github.com/jnjohnsonlbl/example

• Press the Fork button on the upper right

• In practice, there’s more to setting up a fork, but this
illustrates the basic mechanism

https://github.com/jnjohnsonlbl/example

A pull request formalizes the process
of incorporating changes to software.

• A developer does some work in a branch, which
exists in several commits on that branch.

• The developer wants to merge those commits into the
master branch.

• He or she creates a pull request, with a description of
the changes, helpful tags (“bug”, “testing”,
“enhancement”, “data”).

• Colleagues can be notified of the request and asked
to review changes using GitHub’s “diff” views.

A pull request formalizes the process
of incorporating changes to software.

• One or more automated events can be triggered by
a pull request!

• A reviewer may ask for changes to be made before
the merge proceeds

• If/when reviewers are satisfied with the changes,
the developer (or someone else assigned to merge
the changes) can perform the merge, which closes
the pull request.

Submit a pull request to
the example repo

• Clone your fork of the example repo (to your workstation/
laptop).

• Modify a file within your workspace and commit the change.

• Push your change to your fork: 
% git push origin master

• Navigate to your fork’s GitHub page: https://github.com/
yourname/example

• Click the “Pull request” button to the right of “this branch is 1
commit ahead of jnjohnsonlbl:master.”

https://github.com/yourname/example

GitHub’s popularity has spawned some
interesting development processes

• “Git flow” model and variants

GitHub’s popularity has spawned some
interesting development processes

• Forking workflow

GitHub’s popularity has spawned some
interesting development processes

• Mix-n-match (?!)

These processes have been studied by
lots of people, and analysis is ongoing…
• Gitflow: 

http://nvie.com/posts/a-successful-git-branching-model/ 
http://danielkummer.github.io/git-flow-cheatsheet/

• Fork-and-branch workflow: 
http://blog.scottlowe.org/2015/01/27/using-fork-branch-git-
workflow/

• Comparison of Git workflows: 
https://www.atlassian.com/git/tutorials/comparing-workflows/

• Gitflow considered harmful(!): 
http://endoflineblog.com/gitflow-considered-harmful

http://nvie.com/posts/a-successful-git-branching-model/
http://danielkummer.github.io/git-flow-cheatsheet/
http://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/
https://www.atlassian.com/git/tutorials/comparing-workflows/
http://endoflineblog.com/gitflow-considered-harmful

Continuous integration (CI): a
master branch that always works
• Code changes trigger automated builds/tests on target platforms.

• Builds/tests finish in a reasonable amount of time, providing
useful feedback when it’s most needed.

• Immensely helpful!

• Requires some work, though:

• A reasonably automated build system

• An automated test system with significant test coverage

• A set of systems on which tests will be run, and a controller.

Continuous integration (CI): a
master branch that always works
• Has existed for some time

• Adoption has been slow

• Setting up and maintaining CI systems is difficult,
labor-intensive (typically requires a dedicated
staff member)

• You have to be doing a lot of things right to even
consider CI

Cloud-based CI is available
as a service on GitHub.

• Automated builds/tests can be triggered via pull requests.

• Builds/tests run on cloud systems — no server in your
closet. Great use of the cloud!

• Test results are reported on the pull request page (with
links to detailed logs).

• Already being used successfully by scientific computing
projects, with noticeable benefits to productivity.

• Not perfect, but far better than not doing CI.

Travis CI is a great choice
for HPC

• Integrates easily with GitHub

• Free for Open Source projects

• Supports environments with C/C++/Fortran compilers
(GNU, Clang, Intel[?])

• Linux, Mac platforms available

• Relatively simple, reasonably flexible configuration file

• Documentation is sparse, but we now have working
examples.

Travis CI

https://github.com/LBL-EESA/alquimia-dev

https://github.com/LBL-EESA/alquimia-dev

Wrap-up
• Your software projects need version control (not debatable among

professionals, for reasons discussed).

• Distributed Version Control Systems (DVCS) are becoming more
popular, because they allow greater flexibility.

• Git seems to be the tool of choice in industry.

• You don’t need anything more powerful.

• Lots of documentation, knowledge and experience to draw from.

• Learning it is an investment, but the payoff is real (but you might
want to train up a “Git person”).

Wrap-up
• GitHub and similar sites provide capable, cost-effective

development platforms.

• These sites offer useful services that can simplify common
processes and improve your engineering practices.

• There are a number of well-described and well-studied
software development processes that you can choose
from, that incorporate Git and GitHub.

• Continuous Integration (CI) is a very effective practice that
improves code quality, and is now within the reach of small
teams.

Thanks for Participating!
• Make sure you get counted. Please visit http://bit.ly/hpcbp-s03
• We want to improve this series. Please send feedback to

HPCBestPractices+session03@gmail.com
• Slides and a recording will be available from the OLCF training web site: https://

www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

Session 4: Testing your Code/Documenting your Code
Date: Wednesday, June 15, 2016
Time: 1:00-2:00 pm ET
Presenter: Alicia Klinvex, Sandia National Laboratories

Next Webinar

For updates, please register (if you haven’t already)
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

5/18/16 54

https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers
https://www.olcf.ornl.gov/training-event/webinar-series-best-practices-for-hpc-software-developers

