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Computing Center, and Oak Ridge Leadership Computing Facility



OBJECTIVES OF THE SERIES
To bring knowledge of useful software engineering 

practices to HPC scientific code developers
Not to prescribe any set of practices as must use

Be informative about practices that have worked for some 
projects

Emphasis on adoption of practices that help productivity rather 
than put unsustainable burden

Customization as needed – based on information made available

We will do it through examples and case studies
References for available resources
Suggestions for further reading
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WEBINARS IN THE SERIES

What All Codes Should Do: Overview of Best 
Practices in HPC Software Development – May 4, 2016
Overview of the series and a few topics that won’t have a 

webinar of their own 
Motivation – why should a computational scientist worry about 

software process ?
Practices that many codes have adopted and found useful
Customization examples
Community codes – how are they helpful and how to build a 

community
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Developing, Configuring, Building, and Deploying 
HPC Software – May 18, 2016
Tools and best practices for configuring and building
Software design and development
Helpful hints about developer productivity through use of 

development environments
Customizing for the project needs
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Distributed Version Control and Continuous 
Integration Testing – June 2, 2016
Using Git for version control
GitHub as a development platform
Pull requests: a controlled change process
Mechanisms for Communicating and Tracking Progress
Continuous Integration with Travis CI
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WEBINARS IN THE SERIES

Testing and Documenting your Code – June 15, 
2016
How much to test and document

Evaluating the team needs and the extent of testing that is helpful 
rather than burdensome

Granularity of testing
How to leverage testing granularity to pinpoint failure

Code coverage
 Methodology for maximizing code coverage

Getting buy-in from the development team
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WEBINARS IN THE SERIES

Next three, details will come later

How the HPC Environment is Different from the Desktop 
(and Why) – Planned for the week of June 27, 2016

Basic Performance Analysis and Optimization – Planned 
for the week of July 11, 2016

Best Practices for I/O on HPC Systems – Planned for the 
week of July 25, 2016
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OUTLINE

Motivation

Customization

Best Practices

Community Development
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HEROIC PROGRAMMING

Usually a pejorative term, is used to describe the expenditure of huge 
amounts of (coding) effort by talented people to overcome shortcomings in 
process, project management, scheduling, architecture or any other 
shortfalls in the execution of a software development project in order to 
complete it. Heroic Programming is often the only course of action left when 
poor planning, insufficient funds, and impractical schedules leave a project 
stranded and unlikely to complete successfully.
From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach
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WHAT IS WRONG WITH 
HEROIC PROGRAMMING
Scientific results that could be obtained with heroic 
programming have run their course, because:

It is not possible for a single person to take on all these 
roles
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IN EXTREME-SCALE SCIENCE
Codes aiming for higher fidelity modeling
More complex codes, simulations and analysis
Numerous models, more moving parts that need to 

interoperate
Variety of expertise needed – the only tractable development 

model is through separation of concerns
 It is more difficult to work on the same software in 

different roles without a software engineering process
Onset of higher platform heterogeneity
Requirements are unfolding, not known apriori
The only safeguard is investing in flexible design and 

robust software engineering process
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OTHER REASONS
Accretion leads to unmanageable software
Increases cost of maintenance
Parts of software may become unusable over time
Inadequately verified software produces 

questionable results
Increases ramp-on time for new developers
Reduces software and science productivity due to 

technical debt
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consequence of choices – quick and dirty incurs technical debt, collects 
interest which means more effort required to add features. 



"... it seems likely that significant software 
contributions to existing scientific software 
projects are not likely to be rewarded 
through the traditional reputation economy of 
science.  Together these factors provide a 
reason to expect the over-production of 
independent scientific software packages, 
and the underproduction of collaborative 
projects in which later academics build on 
the work of earlier ones."

Howison & Herbsleb (2011)



OUTLINE
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Community Development
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SURVEY OF IDEAS USE-
CASES
IDEAS scientific software productivity project: www.ideas-
productivity.org

 Five application codes and four numerical libraries
 All use version control, and all but one use distributed 

version control
 Builds are evenly divided between GNU make and CMake
 All provide documentation with some form of user’s guide, 

many use automated documentation generation tools
 All have testing in some form, a couple do manual 

regression testing, the rest are automated
 Roughly half make use of unit testing explicitly
Majority are publicly available
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SUMMARY FROM COMMUNITY 
CODES WORKSHOP (2012)

http://flash.uchicago.edu/cc2012/

 Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-
suite, AMBER, Chombo, and yt

 Software architecture is almost always in the form of 
composable components
 Need for extensibility

 All codes have rigorous auditing processes in place
 Gatekeeping for contributions, though models are different
 All codes have wide user communities, and the communities 

benefit from a common highly exercised code base
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CHALLENGES
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Technical
 All parts of the cycle can be under research
 Requirements change throughout the lifecycle as knowledge 

grows
 Verification complicated by floating point representation
 Real world is messy, so is the software

Sociological
 Competing priorities and incentives
 Limited resources 
 Perception of overhead without benefit
 Need for interdisciplinary interactions



CUSTOMIZATIONS
Testing does not follow specific methods as 

understood by the software engineering research 
community
The extent and granularity reflective of project priorities 

and team size
Larger teams have more formalization

Lifecycle – closer to the figure in the next slide
Development model
Mostly ad-hoc, some are close to agile model, but none 

follows it explicitly
Much more responsive to the needs of the lifecycle
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LIFECYCLE
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SOFTWARE PRODUCTIVITY 
CYCLE

5/4/2016 20

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf
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SOFTWARE PROCESS 
Baseline
 Invest in extensible code design
 Use version control and automated testing
 Institute a rigorous verification and validation regime
 Define coding and testing standards
 Clear and well defined policies for 

 Auditing and maintenance
 Distribution and contribution
 Documentation

Desirable
 Provenance and reproducibility
 Lifecycle management
 Open development and frequent releases

Many of these practices 
will be covered in much 

greater detail later in 
the series



A USEFUL RESOURCE
https://ideas-productivity.org/resources/howtos/

 ‘What Is’ docs: 2-page characterizations of 
important topics for SW projects in computational 
science & engineering (CSE)

 ‘How To’ docs: brief sketch of best practices
Emphasis on ``bite-sized'' topics enables CSE software teams 

to consider improvements at a small but impactful scale
We welcome feedback from the community to help 

make these documents more useful

5/4/2016 23



OTHER RESOURCES
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.
pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147
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CONSIDERATIONS FOR 
CUSTOMIZATION
There is no “all or none”
Focus on improving productivity rather than purity 

of process
There is danger of being too dismissive too soon
Examine options with as little bias as possible

Fine balance between getting a buy-in from the 
team and imposing process on them
Many skeptics get converted when they see the benefit
First reaction usually is resistance to change and 

suspicion of new processes
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A partnership model that works
Science users treat the code as a research instrument 

that needs its own research
Developers and computer scientists interested in a 

product and the science being done with the code
Helps to have people with multidisciplinary training 

Comparable resources and autonomy for the developers
And recognition of their intellectual contribution to scientific 

discovery

Careful balance between long term and short term 
objectives

INTERDISCIPLINARY 
INTERACTIONS
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 Scientists can focus on developing for their 
algorithmic needs instead of getting bogged down 
by the infrastructural development

 Graduate students do not start developing codes 
from scratch
 Look at the available public codes and converge 

on the ones that most meet their needs
 Look at the effort of customization for their 

purposes
 Select the public code, and build upon it as they 

need

WHY COMMUNITY CODES ?

Important to remember that they still need to understand the components developed 
by others that they are using, they just don’t have to actually develop everything 

themselves. And this is particularly true of pesky detailed infrastructure/solvers that 
are too well understood to have any research component, but are time consuming to 

implement right
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 Researchers can build upon work of others and 
get further faster, instead of reinventing the wheel
 Code component re-use
 No need to become an expert in every 

numerical technique
 More reliable results because of more stress 

tested code
 Enough eyes looking at the code will find any 

errors faster
 New implementations take several years to iron 

out the bugs and deficiencies
 Different users use the code in different ways 

and stress it in different ways
 Open-source science results in more reproducible 

results
 Generally good for the credibility



THE ASTROPHYSICS 
COMMUNITY
Had an early culture of releasing research software 

starting in the early eighties
N-body codes for many-body gravitational interactions 

Nbodyx went from Nbody1 to Nbody6
Barnes and Hut tree code

Hydrodymanics with ZEUS-2D, and later ZEUS-3D 
SPH codes such as Hydra and Gadget

Over time public codes became more sophisticated
AMR appeared in FLASH is early 2000
Shock-capturing MHD and radiation hydro also started to 

appear
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ASTROPHYSICS NEEDS MULTI-PHYSICS AND MULTI-SCALE

Shortly: Relativistic accretion onto NS

Gravitational collapse/Jeans instability

Intracluster interactions

Type !a Supernova

Mesh methods: Explicit (gas 
dynamics), semi-Implicit 
(gravitational potential), and 
implicit (radiation)

Particle methods: tracers, 
massive, charged

Point-wise calculations: EOS, 
source terms

AMR for data and 
computation compression

Developing and maintaining such complex codes is beyond the 
resources of capabilities of individuals or even small groups: 
Community codes are the solution 

Galaxy Cluster Merger
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WHAT ABOUT OTHER 
COMMUNITIES ?
Community/open-source approach more common 

in areas which need multi-physics and/or multi-
scale
A visionary sees the benefit of software re-use and 

releases the code
Sophistication in modeling advances more rapidly in 

such communities
Others keep their software close for perceived 

competitive advantage
Repeated re-invention of wheel
General advancement of model fidelity slower

Let us examine what does it take to build a community code
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COMMUNITY BUILDING
 Popularizing the code alone does not build a community
 Neither does customizability – different users want different 

capabilities

So what does it take ?
 Enabling contributions from users and providing support for 

them
 Including policy provisions for balancing the IP protection 

with open source needs
 Relaxed distribution policies – giving collective ownership to 

groups of users so they can modify the code and share 
among themselves as long as they have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong 
culture of user support is a pre-requisite 
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EXAMPLES : FLASH
 Under sustained funding from the ASC alliance program
 One of the expected outcomes was a public code

 Use the same code for many different applications
All target applications were for reactive flows

 Diverging camps from the beginning
 Camp 1: Produce a well architected modular code
 Camp 2: Let’s build what can be used for science soon

 Both goals hard to meet in the near term
 Two parallel development paths started

 Not enough resources to sustain both
 Camp 2 won out

 Took three iterations of code refactoring to get robust 
framework built
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FLASH’S COMMUNITY
 Originally designed for thermo-nuclear flashes

 Expanded to include N-body capabilities through particles
 Over the years many other physics capabilities got added 

 Now serves many communities in Astrophysics, Cosmology, 
Solar physics, HEDP and CFD/FSI 
 Over 1100 publications in a self reporting database

 Very little modification to the basic infrastructure needed to 
accommodate these capabilities

 Additions typically prove to be synergistic for all the 
communities

 Follows a “Cathedral” model, code managed by the Flash 
Center with gatekeeping for external contributions

(http://www.catb.org/esr/writings/cathedral-bazaar/)
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COMMUNITY BUILDING
 Took several years 
 Started with collaborations with the Center scientists
 Alumni of the center took the culture and the code with 

them
 Their students and post-docs adopted the code

 Tutorials on-site and at scientific conferences to promote
 Tutorials had hands-on sessions and help for user’s specific 

problems
 Easy customizability built into the infrastructure helped

 As did the included ready to run examples
 Increasing capabilities enable tackling more complex and 

higher fidelity modeling

The greatest impact in popularizing the code though was relative ease in getting 
started, easy customizability and reliability
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ENZO : TRANSITIONED FROM 
CLOSE TO OPEN SOURCE
Started as a closed code
From 1996-2003

First public release in March 2004
Mostly cathedral model

Has now moved very close to a “bazaar” model
25 contributors (~12 active developers) at >10 institutions
~200 people on enzo-users mailing list (~50% active?)
Financial support from NSF (AST, OCI, PHY), NASA,and

DOE
• Complementary community: yt (http://yt-

project.org)
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DEVELOPMENT MODEL

Entirely distributed development model
Small number of developers per institution

Use code forks / pull requests to move features 
from development branches to the main branch

Almost all discussion on archived public mailing 
lists 
And on Google docs
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COMMUNITY
Most developers are astrophysicists “scratching 

their own itch”
Development spurred by ~1.5 workshops/year 
And periodic task-oriented “code sprints”
Many streams of funding

Enthusiastic and heavily involved user/developer 
community

Challenges:
No leader => hard to make major code revisions
Part-time developers: distractions, less incentive to do 

“boring but important” infrastructure development
Significant work required to build consensus and keep 

community together
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COMMUNITY CODES: 
SUMMARY 
Open source with a governance structure in place
Trust building among teams
Commitment to transparent communications
Strong commitment to user support
Either an interdisciplinary team, or a group of people 

comfortable with science and code development
Attention to software engineering and documentation
Understanding the benefit of sharing as opposed to 

being secretive about the code
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CONTRIBUTION POLICIES
Balancing contributors and code distribution 

needs
Contributor may want some IP protection

Maintainable code requirements
The minimum set needed from the contributor

Source code, build scripts, tests, documentation

Agreement on user support
Contributor or the distributor

Add-ons: components not included with the 
distribution, but work with the code
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 There are many reasons why software 
engineering practices are good and should be 
encouraged
 Science and engineering by simulation needs 

more scrutiny into the methods and software
 There is no need to keep reinventing the 

wheel
 This is especially true of book-keeping 

work
 Reuse infrastructural components

 The days of heroic programming are past, 
collaborative efforts are more productive

 They are indispensible for extreme-scale 
computing 

CONCLUSIONS

It is extremely important to recognize that science through computing is 
only as good as the software that produces it



LAST THOUGHT: WHAT CAN HAPPEN WHEN 
PROCESS IS IGNORED
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 Many in-flight corrections of defects
 One was adding tags to track individual particles
 Got many duplicated tags due to round-off

 Had to develop post-processing tools to correctly 
identify trajectories

 In 2005 BG/L was made 
available at short notice

 Quick and dirty 
development of particles

FLASH had a software process in place. It was tested regularly. This was one instance 
when the full process could not be applied because of time constraints. We got ready for 

the run in less than a month, the run went for 1.5 weeks, and it took over 6 months 
before we could trust the processed results.


