
MAY 4, 2016
ANSHU DUBEY
MATHEMATICS AND COMPUTER SCIENCE DIVISION
ARGONNE NATIONAL LABORATORY

WHAT ALL CODES
SHOULD DO:
OVERVIEW OF
BEST PRACTICES
IN HPC
SOFTWARE
DEVELOPMENT

Webinar Series: Collaboration among the IDEAS Scientific Software Productivity
Project, Argonne Leadership Computing Facility, National Energy Research Scientific
Computing Center, and Oak Ridge Leadership Computing Facility

OBJECTIVES OF THE SERIES
To bring knowledge of useful software engineering

practices to HPC scientific code developers
Not to prescribe any set of practices as must use

Be informative about practices that have worked for some
projects

Emphasis on adoption of practices that help productivity rather
than put unsustainable burden

Customization as needed – based on information made available

We will do it through examples and case studies
References for available resources
Suggestions for further reading

5/4/2016 2

WEBINARS IN THE SERIES

What All Codes Should Do: Overview of Best
Practices in HPC Software Development – May 4, 2016
Overview of the series and a few topics that won’t have a

webinar of their own
Motivation – why should a computational scientist worry about

software process ?
Practices that many codes have adopted and found useful
Customization examples
Community codes – how are they helpful and how to build a

community

5/4/2016 3

Developing, Configuring, Building, and Deploying
HPC Software – May 18, 2016
Tools and best practices for configuring and building
Software design and development
Helpful hints about developer productivity through use of

development environments
Customizing for the project needs

5/4/2016 4

WEBINARS IN THE SERIES

Distributed Version Control and Continuous
Integration Testing – June 2, 2016
Using Git for version control
GitHub as a development platform
Pull requests: a controlled change process
Mechanisms for Communicating and Tracking Progress
Continuous Integration with Travis CI

5/4/2016 5

WEBINARS IN THE SERIES

WEBINARS IN THE SERIES

Testing and Documenting your Code – June 15,
2016
How much to test and document

Evaluating the team needs and the extent of testing that is helpful
rather than burdensome

Granularity of testing
How to leverage testing granularity to pinpoint failure

Code coverage
 Methodology for maximizing code coverage

Getting buy-in from the development team

5/4/2016 6

WEBINARS IN THE SERIES

Next three, details will come later

How the HPC Environment is Different from the Desktop
(and Why) – Planned for the week of June 27, 2016

Basic Performance Analysis and Optimization – Planned
for the week of July 11, 2016

Best Practices for I/O on HPC Systems – Planned for the
week of July 25, 2016

5/4/2016 7

OUTLINE

Motivation

Customization

Best Practices

Community Development

5/4/2016 8

HEROIC PROGRAMMING

Usually a pejorative term, is used to describe the expenditure of huge
amounts of (coding) effort by talented people to overcome shortcomings in
process, project management, scheduling, architecture or any other
shortfalls in the execution of a software development project in order to
complete it. Heroic Programming is often the only course of action left when
poor planning, insufficient funds, and impractical schedules leave a project
stranded and unlikely to complete successfully.
From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

5/4/2016 9

WHAT IS WRONG WITH
HEROIC PROGRAMMING
Scientific results that could be obtained with heroic
programming have run their course, because:

It is not possible for a single person to take on all these
roles

5/4/2016 10

Better scientific
understanding

Different
roles
and
responsi-
bilities

More complex
software

Math model

Numerics

Verification

Performance

IN EXTREME-SCALE SCIENCE
Codes aiming for higher fidelity modeling
More complex codes, simulations and analysis
Numerous models, more moving parts that need to

interoperate
Variety of expertise needed – the only tractable development

model is through separation of concerns
 It is more difficult to work on the same software in

different roles without a software engineering process
Onset of higher platform heterogeneity
Requirements are unfolding, not known apriori
The only safeguard is investing in flexible design and

robust software engineering process

5/4/2016 11

OTHER REASONS
Accretion leads to unmanageable software
Increases cost of maintenance
Parts of software may become unusable over time
Inadequately verified software produces

questionable results
Increases ramp-on time for new developers
Reduces software and science productivity due to

technical debt

5/4/2016 12

consequence of choices – quick and dirty incurs technical debt, collects
interest which means more effort required to add features.

"... it seems likely that significant software
contributions to existing scientific software
projects are not likely to be rewarded
through the traditional reputation economy of
science. Together these factors provide a
reason to expect the over-production of
independent scientific software packages,
and the underproduction of collaborative
projects in which later academics build on
the work of earlier ones."

Howison & Herbsleb (2011)

OUTLINE

Motivation

Customization

Best Practices

Community Development

5/4/2016 14

SURVEY OF IDEAS USE-
CASES
IDEAS scientific software productivity project: www.ideas-
productivity.org

 Five application codes and four numerical libraries
 All use version control, and all but one use distributed

version control
 Builds are evenly divided between GNU make and CMake
 All provide documentation with some form of user’s guide,

many use automated documentation generation tools
 All have testing in some form, a couple do manual

regression testing, the rest are automated
 Roughly half make use of unit testing explicitly
Majority are publicly available

5/4/2016 15

SUMMARY FROM COMMUNITY
CODES WORKSHOP (2012)

http://flash.uchicago.edu/cc2012/

 Codes – FLASH, Cactus, Enzo, ESMF, Lattice QCD code-
suite, AMBER, Chombo, and yt

 Software architecture is almost always in the form of
composable components
 Need for extensibility

 All codes have rigorous auditing processes in place
 Gatekeeping for contributions, though models are different
 All codes have wide user communities, and the communities

benefit from a common highly exercised code base

5/4/2016 16

CHALLENGES

5/4/2016 17

Technical
 All parts of the cycle can be under research
 Requirements change throughout the lifecycle as knowledge

grows
 Verification complicated by floating point representation
 Real world is messy, so is the software

Sociological
 Competing priorities and incentives
 Limited resources
 Perception of overhead without benefit
 Need for interdisciplinary interactions

CUSTOMIZATIONS
Testing does not follow specific methods as

understood by the software engineering research
community
The extent and granularity reflective of project priorities

and team size
Larger teams have more formalization

Lifecycle – closer to the figure in the next slide
Development model
Mostly ad-hoc, some are close to agile model, but none

follows it explicitly
Much more responsive to the needs of the lifecycle

5/4/2016 18

LIFECYCLE

5/4/2016 19

Modeling
Approximations
Discretizations
Numerics

Convergence
Stability

Implementation
Verification

Expected
behavior

Validation
Experiment/obse

rvation
Numerical solvers

Valida on

Physical World

Equa ons

Difference
equa ons Implementa on

Model

Discre ze

Verify accuracy
 stability

Model
fidelity

Model
fidelity

SOFTWARE PRODUCTIVITY
CYCLE

5/4/2016 20

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

OUTLINE

Motivation

Customization

Best Practices

Community Development

5/4/2016 21

5/4/2016 22

SOFTWARE PROCESS
Baseline
 Invest in extensible code design
 Use version control and automated testing
 Institute a rigorous verification and validation regime
 Define coding and testing standards
 Clear and well defined policies for

 Auditing and maintenance
 Distribution and contribution
 Documentation

Desirable
 Provenance and reproducibility
 Lifecycle management
 Open development and frequent releases

Many of these practices
will be covered in much

greater detail later in
the series

A USEFUL RESOURCE
https://ideas-productivity.org/resources/howtos/

 ‘What Is’ docs: 2-page characterizations of
important topics for SW projects in computational
science & engineering (CSE)

 ‘How To’ docs: brief sketch of best practices
Emphasis on ``bite-sized'' topics enables CSE software teams

to consider improvements at a small but impactful scale
We welcome feedback from the community to help

make these documents more useful

5/4/2016 23

OTHER RESOURCES
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.
pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

5/4/2016 24

CONSIDERATIONS FOR
CUSTOMIZATION
There is no “all or none”
Focus on improving productivity rather than purity

of process
There is danger of being too dismissive too soon
Examine options with as little bias as possible

Fine balance between getting a buy-in from the
team and imposing process on them
Many skeptics get converted when they see the benefit
First reaction usually is resistance to change and

suspicion of new processes

5/4/2016 25

5/4/2016 26

A partnership model that works
Science users treat the code as a research instrument

that needs its own research
Developers and computer scientists interested in a

product and the science being done with the code
Helps to have people with multidisciplinary training

Comparable resources and autonomy for the developers
And recognition of their intellectual contribution to scientific

discovery

Careful balance between long term and short term
objectives

INTERDISCIPLINARY
INTERACTIONS

OUTLINE

Motivation

Customization

Best Practices

Community Development

5/4/2016 27

5/4/2016 28

 Scientists can focus on developing for their
algorithmic needs instead of getting bogged down
by the infrastructural development

 Graduate students do not start developing codes
from scratch
 Look at the available public codes and converge

on the ones that most meet their needs
 Look at the effort of customization for their

purposes
 Select the public code, and build upon it as they

need

WHY COMMUNITY CODES ?

Important to remember that they still need to understand the components developed
by others that they are using, they just don’t have to actually develop everything

themselves. And this is particularly true of pesky detailed infrastructure/solvers that
are too well understood to have any research component, but are time consuming to

implement right

5/4/2016 29

 Researchers can build upon work of others and
get further faster, instead of reinventing the wheel
 Code component re-use
 No need to become an expert in every

numerical technique
 More reliable results because of more stress

tested code
 Enough eyes looking at the code will find any

errors faster
 New implementations take several years to iron

out the bugs and deficiencies
 Different users use the code in different ways

and stress it in different ways
 Open-source science results in more reproducible

results
 Generally good for the credibility

THE ASTROPHYSICS
COMMUNITY
Had an early culture of releasing research software

starting in the early eighties
N-body codes for many-body gravitational interactions

Nbodyx went from Nbody1 to Nbody6
Barnes and Hut tree code

Hydrodymanics with ZEUS-2D, and later ZEUS-3D
SPH codes such as Hydra and Gadget

Over time public codes became more sophisticated
AMR appeared in FLASH is early 2000
Shock-capturing MHD and radiation hydro also started to

appear

5/4/2016 31

ASTROPHYSICS NEEDS MULTI-PHYSICS AND MULTI-SCALE

Shortly: Relativistic accretion onto NS

Gravitational collapse/Jeans instability

Intracluster interactions

Type !a Supernova

Mesh methods: Explicit (gas
dynamics), semi-Implicit
(gravitational potential), and
implicit (radiation)

Particle methods: tracers,
massive, charged

Point-wise calculations: EOS,
source terms

AMR for data and
computation compression

Developing and maintaining such complex codes is beyond the
resources of capabilities of individuals or even small groups:
Community codes are the solution

Galaxy Cluster Merger

5/4/2016 32

WHAT ABOUT OTHER
COMMUNITIES ?
Community/open-source approach more common

in areas which need multi-physics and/or multi-
scale
A visionary sees the benefit of software re-use and

releases the code
Sophistication in modeling advances more rapidly in

such communities
Others keep their software close for perceived

competitive advantage
Repeated re-invention of wheel
General advancement of model fidelity slower

Let us examine what does it take to build a community code

5/4/2016 33

COMMUNITY BUILDING
 Popularizing the code alone does not build a community
 Neither does customizability – different users want different

capabilities

So what does it take ?
 Enabling contributions from users and providing support for

them
 Including policy provisions for balancing the IP protection

with open source needs
 Relaxed distribution policies – giving collective ownership to

groups of users so they can modify the code and share
among themselves as long as they have the license

More inclusivity => greater success in community building
An investment in robust and extensible infrastructure, and a strong
culture of user support is a pre-requisite

5/4/2016 34

EXAMPLES : FLASH
 Under sustained funding from the ASC alliance program
 One of the expected outcomes was a public code

 Use the same code for many different applications
All target applications were for reactive flows

 Diverging camps from the beginning
 Camp 1: Produce a well architected modular code
 Camp 2: Let’s build what can be used for science soon

 Both goals hard to meet in the near term
 Two parallel development paths started

 Not enough resources to sustain both
 Camp 2 won out

 Took three iterations of code refactoring to get robust
framework built

5/4/2016 35

FLASH’S COMMUNITY
 Originally designed for thermo-nuclear flashes

 Expanded to include N-body capabilities through particles
 Over the years many other physics capabilities got added

 Now serves many communities in Astrophysics, Cosmology,
Solar physics, HEDP and CFD/FSI
 Over 1100 publications in a self reporting database

 Very little modification to the basic infrastructure needed to
accommodate these capabilities

 Additions typically prove to be synergistic for all the
communities

 Follows a “Cathedral” model, code managed by the Flash
Center with gatekeeping for external contributions

(http://www.catb.org/esr/writings/cathedral-bazaar/)

5/4/2016 36

COMMUNITY BUILDING
 Took several years
 Started with collaborations with the Center scientists
 Alumni of the center took the culture and the code with

them
 Their students and post-docs adopted the code

 Tutorials on-site and at scientific conferences to promote
 Tutorials had hands-on sessions and help for user’s specific

problems
 Easy customizability built into the infrastructure helped

 As did the included ready to run examples
 Increasing capabilities enable tackling more complex and

higher fidelity modeling

The greatest impact in popularizing the code though was relative ease in getting
started, easy customizability and reliability

5/4/2016 37

ENZO : TRANSITIONED FROM
CLOSE TO OPEN SOURCE
Started as a closed code
From 1996-2003

First public release in March 2004
Mostly cathedral model

Has now moved very close to a “bazaar” model
25 contributors (~12 active developers) at >10 institutions
~200 people on enzo-users mailing list (~50% active?)
Financial support from NSF (AST, OCI, PHY), NASA,and

DOE
• Complementary community: yt (http://yt-

project.org)

5/4/2016 38

DEVELOPMENT MODEL

Entirely distributed development model
Small number of developers per institution

Use code forks / pull requests to move features
from development branches to the main branch

Almost all discussion on archived public mailing
lists
And on Google docs

5/4/2016 39

COMMUNITY
Most developers are astrophysicists “scratching

their own itch”
Development spurred by ~1.5 workshops/year
And periodic task-oriented “code sprints”
Many streams of funding

Enthusiastic and heavily involved user/developer
community

Challenges:
No leader => hard to make major code revisions
Part-time developers: distractions, less incentive to do

“boring but important” infrastructure development
Significant work required to build consensus and keep

community together

5/4/2016 41

COMMUNITY CODES:
SUMMARY
Open source with a governance structure in place
Trust building among teams
Commitment to transparent communications
Strong commitment to user support
Either an interdisciplinary team, or a group of people

comfortable with science and code development
Attention to software engineering and documentation
Understanding the benefit of sharing as opposed to

being secretive about the code

5/4/2016 42

CONTRIBUTION POLICIES
Balancing contributors and code distribution

needs
Contributor may want some IP protection

Maintainable code requirements
The minimum set needed from the contributor

Source code, build scripts, tests, documentation

Agreement on user support
Contributor or the distributor

Add-ons: components not included with the
distribution, but work with the code

5/4/2016 43

 There are many reasons why software
engineering practices are good and should be
encouraged
 Science and engineering by simulation needs

more scrutiny into the methods and software
 There is no need to keep reinventing the

wheel
 This is especially true of book-keeping

work
 Reuse infrastructural components

 The days of heroic programming are past,
collaborative efforts are more productive

 They are indispensible for extreme-scale
computing

CONCLUSIONS

It is extremely important to recognize that science through computing is
only as good as the software that produces it

LAST THOUGHT: WHAT CAN HAPPEN WHEN
PROCESS IS IGNORED

5/4/2016 44

 Many in-flight corrections of defects
 One was adding tags to track individual particles
 Got many duplicated tags due to round-off

 Had to develop post-processing tools to correctly
identify trajectories

 In 2005 BG/L was made
available at short notice

 Quick and dirty
development of particles

FLASH had a software process in place. It was tested regularly. This was one instance
when the full process could not be applied because of time constraints. We got ready for

the run in less than a month, the run went for 1.5 weeks, and it took over 6 months
before we could trust the processed results.

