Python in HPC

IDEAS Webinar June 7, 2017

Rollin Thomas (NERSC), William Scullin (ALCF), and Matt Belhorn (OLCF)

Scope of This Webinar

What we want to do:

- Explain what NERSC, ALCF, and OLCF are doing to welcome and support Python users in HPC.
- Provide guidance and best practices to help users improve Python performance at the Centers.
- Point out some great tools that now exist to support developers of Python in HPC.

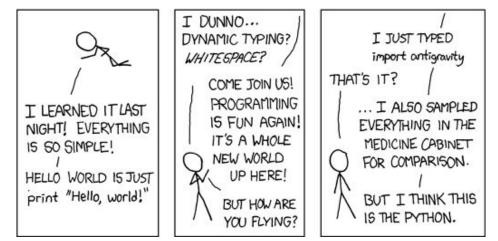
What we assume:

- You know and use Python and are familiar with the Scientific Python Stack, or
- You know and use HPC and are curious about using Python in your own HPC work.

Getting Started with Python Resources

https://www.python.org/about/gettingstarted/

https://wiki.python.org/moin/BeginnersGuide


https://www.codecademy.com/learn/python

https://www.coursera.org/specializations/python

https://software-carpentry.org/lessons/

https://pymotw.com/

PYTHON! YOU'RE FLYING HOW

https://xkcd.com/353/

Motivation

How is Python relevant to HPC?

Practical Matters

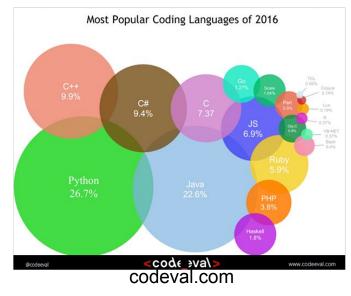
Using Python at NERSC, ALCF, and OLCF

• Single Node Performance

Threads • Cython, Extensions • Profiling

Scaling Up Python

MPI(4py) • Caveats • Parallel I/O


Conclusion & More Resources

Motivation How is Python relevant to HPC?

Python is a Very Popular Language

Aug 2016	Aug 2015	Change	Programming Language	Ratings	Change	
1	1		Java	19.010%	-0.26%	
2	2		С	11.303%	-3.43%	
3	3		C++	5.800%	-1.94%	
4	4		C#	4.907%	+0.07%	
5	5		Python	4.404%	+0.34%	
6	7	^	PHP	3.173%	+0.44%	
7	9	^	JavaScript	2.705%	+0.54%	
8	8		Visual Basic .NET	2.518%	-0.19%	
9	10	^	Perl	2.511%	+0.39%	
10	12	^	Assembly language	2.364%	+0.60%	

www.tiobe.com/tiobe-index

"What programming languages are good for Data Science?"

"What programming language should I learn?"

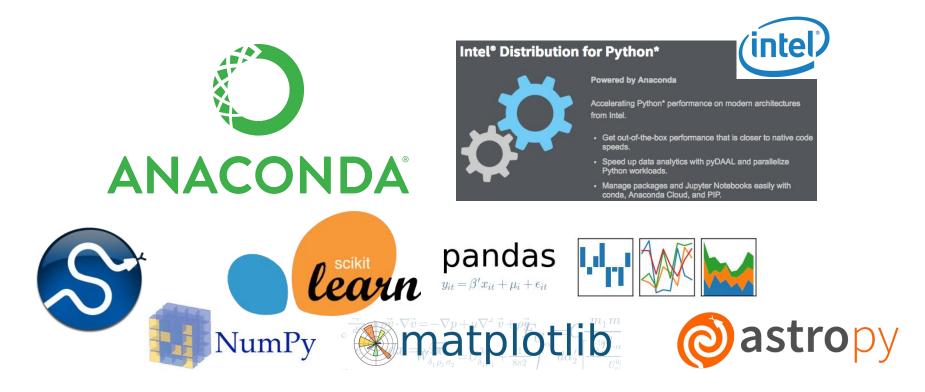
bestprogramminglanguagefor.me

"What programming languages are widely used in industry, science, or ML/coding challenges?"

Why is Python Popular?

Makes a great first impression:

Clean, clear syntax. Multi-paradigm, interpreted. Duck typing, garbage collection. **"Instant productivity!"**


Keeps up with users' needs:

Flexible, full-featured data structures.
Extensive standard libraries.
Reusable open-source packages (PyPI).
Package management tools.
Good unit testing frameworks.
Extensible with C/C++/Fortran for optimizing high-performance kernels.
"Instant productivity,

performance when you need it" (?)

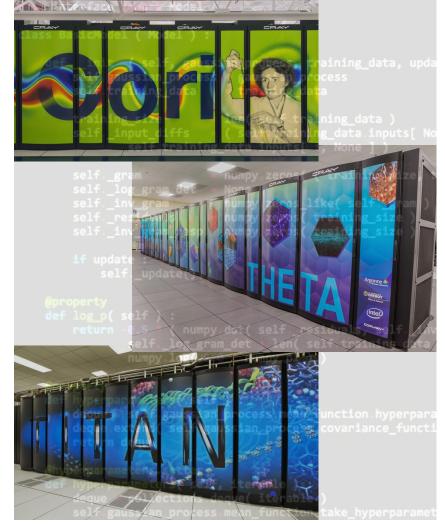
```
interface import Model
class BasicModel ( Model ) :
    def __init__( self, gaussian_process, training_data, upda
        self.gaussian_process = gaussian_process
        self training data
                              training_data
        training size
                            = len( self training data )
        self._input_diffs
                            = ( self.training data.inputs[ No
                self.training data inputs[ :, None ] )
        self. gram
                            = numpy.zeros( ( training size, t
        self. log gram det =
                              None
        self. inv gram
                            = numpy_zeros like( self, gram )
        self._residuals
                             = numpy_zeros( training size )
        self._inv_gram_resp = numpy.zeros( training_size )
        if update :
            self._update()
    @property
    def log p( self ) :
        return -0.5 * ( numpy.dot( self._residuals, self._inv
                self._log_gram_det + len( self.training_data
                numpy.log( 2.0 * numpy.pi ) )
    property
    def hyperparameters( self ) :
        deque = self.gaussian_process.mean_function.hyperpara
        deque_extend( self_gaussian_process_covariance_functi
        return deque
    @hyperparameters.setter
    def hyperparameters( self, iterable ) :
        deque = collections.deque( iterable )
        self gaussian process mean function take hyperparamet
```

The Scientific Python Stack

Primary Uses:

- Script workflows for both data analysis and simulations
- Perform exploratory, interactive data analytics & viz

Python at the HPC Center


Observation: *High productivity* has driven the growth of Python in the sciences.

...Not *high performance* (so much).

But supporting Python is no longer optional at HPC centers like NERSC, ALCF, OLCF.

Maximizing Python performance on these systems can be *(ok, is)* challenging:

- Interpreted, dynamic languages are difficult to optimize.
- Python's global interpreter lock (GIL) has consequences for parallelism.
- Language design and implementation choices made without considering realities of HPC.

PyFR: Gordon Bell & SC16 Best Paper Finalist

Towards Green Aviation with Python at Petascale

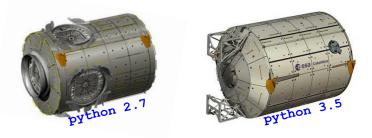
Peter Vincent^{*}, Freddie Witherden[†], Brian Vermeire[‡], Jin Seok Park[§] and Arvind Iyer[¶] Department of Aeronautics, Imperial College London, London, United Kingdom

- Demonstrated use of Python in a high-end HPC context for simulation of real-world flow problems at up to 13.7 DP-PFLOP/s.
- Detailed how a single Python codebase can target multiple platforms, including heterogeneous systems, using an innovative runtime codegeneration paradigm.
- Achieved 58% computational efficiency for an unstructured mesh fluid dynamics simulation.
- Performance portability enabled by Python:
 CFD from a single code base supporting CPU and GPU architectures, a few x1000 lines of code.
- There is a place for Python at the highest levels of performance in supercomputing.

[http://sc16.supercomputing.org/2016/08/23/finalists-compete-prestigious-acm-gordon-bell-prize-high-performance-computing/10 [http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees]

Basic Guidelines for Python in HPC

- Identify and exploit parallelism at the core, node, and cluster levels.
- Understand and apply numpy array syntax and its broadcasting rules (skipped here):


[https://docs.scipy.org/doc/numpy/reference/arrays.html] [https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

- Measure your codes' performance using profiling tools.
- Ask for help.

Practical Matters Using Python at NERSC, ALCF, & OLCF

Python at NERSC, ALCF, & OLCF

[http://modules.sourceforge.net]

"The Environment Modules package provides for the dynamic modification of a user's environment via modulefiles."

```
module avail python
module load python
module swap python/2.7 python/3.5
module help...
```

- Or install your own Python (many options).
- System Python (e.g. /usr/bin/python), use at your own risk.

Python Builds and Distributions

Centers may build, install Python & packages from

- ... source,
- ... package managers like Spack*, [https://spack.readthedocs.io/en/latest/] ... using distribution like Anaconda "and/or" Intel, OMORY (https://docs.continuum.io/anaconda/) [https://docs.continuum.io/anaconda/] [https://software.intel.com/en-us/distribution-for-python]
- ... or all of the above.

Centers also let users set up their own!

- Packages depending on MPI should *always* be built against system vendor-provided libraries.
- Anaconda distribution comes with Intel MKL built-in. Intel distribution heavily leverages Anaconda tools.

Customizing I: Virtualenv

User-controlled isolated python environments

- Site packages root under your control
- Activated venvs preclude other python interpreters
- Semi-conflicts with environment modules
 Setup environment modules prior to activation

(my_env) \$ deactivate

Customizing I: Virtualenv (cont'd)

Your packages with an external interpreter

- Install your own packages in your venv
- Use them with external python within your python scripts
- Mix-and-match with center-provided packages

```
#!/usr/bin/env python2.7
activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))
```

N.B.: Packages installed in the venv will supercede versions installed at the site level.

Customizing II: Conda environments

Anaconda provides the *conda* tool:

[https://conda.io/docs/index.html]

- Create, update, share "environments."
- Incompatible with virtualenv, replaces it.
- Many pre-built packages organized in custom "channels."
- Leverage your center's Anaconda install to create custom environments with the conda tool.

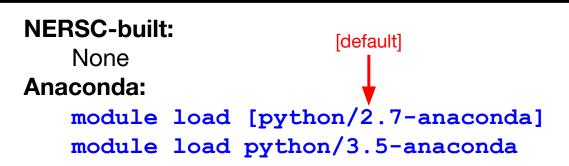
Your own Anaconda/"Miniconda" installation:

wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
/bin/bash Miniconda2-latest-Linux-x86_64.sh -b -p \$PREFIX
source \$PREFIX/bin/activate
conda install basemap yt...

Your own Intel Python Installation:

conda create -c intel -n idp intelpython2_core python=2
source activate idp

Python at NERSC


NERSC-built:

module load python[/2.7.9]
python_base/2.7.9
numpy/1.9.2
scipy/0.15.1
matplotlib/1.4.3
ipython/3.1.0

Anaconda:

module load python/2.7-anaconda
module load python/3.5-anaconda

Conda env via module (either system) module load python/2.7-anaconda conda create -n myenv numpy... source activate myenv

[http://www.nersc.gov/users/data-analytics/data-analytics/python/]¹⁸

Python at ALCF

- Every system we run is a cross-compile environment except Cooley
- pip/distutils/setuptools/anaconda don't play well with cross-compiling
- Blue Gene/Q Python is manually mantained
 - Instructions on use are available in: /soft/cobalt/examples/python
 - Modules built on request
- Theta offers Python either as:
 - Intel Python managed and used via Conda
 - We prefer users to install their own environments
 - Users will need to set up their environment to use the Cray MPICH compatibility ABI and strictly build with the Intel MPI wrappers: http://docs.cray.com/books/S-2544-704/S-2544-704.pdf
 - $\circ~$ ALCF Python managed via Spack and loadable via modules

module load alcfpython/2.7.13-20170513

- A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...
- We build and rebuild alcfpython via Spack to emphasize performance and Cray compatibility
- Use of virtualenv is recommended do not mix conda and virtualenv!!!
- We'll build any package with a Spack spec on request

Python at OLCF

Provided interpreters:

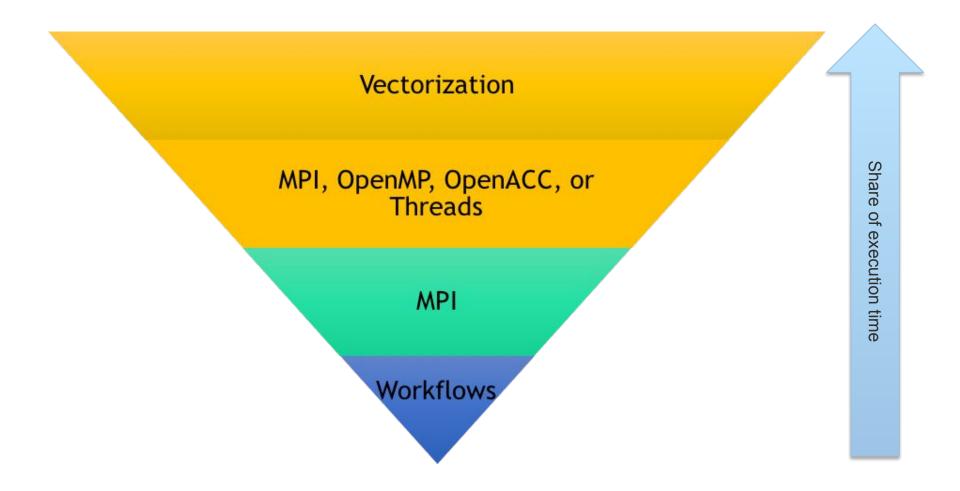
module load python[/2.7.9] python/3.5.1

Major Provided Packages:

```
python_numpy/1.9.2
python_scipy/0.15.1
python_matplotlib/1.2.1
python_ipython/3.0.0
python_mpi4py/1.3.1
python_h5py/2.6.0
python_netcdf4/1.1.7
```


Anaconda:

- Prefer to build your own
- Generally interferes with Tcl Environment Modules


Custom package install paths:

- Prefer NFS project space ccs/proj/\${PROJECTID
- Take care with user site-packages, \$ { HOME }
- Avoid /lustre/atlas

Further site-specific information on the OLCF Website

[https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olc f-python-best-practices] Single Node Performance Threads • Cython, Extensions • Profiling

Structuring a HPC Python code

Parallelism & Python: A Word on the GIL

To keep memory coherent, Python only allows a single thread to run in the interpreter's memory space at once. This is enforced by the Global Interpreter Lock, or GIL.

The GIL isn't all bad. It:

- Is mostly sidestepped for I/O (files and sockets)
- Makes writing modules in C much easier
- Makes maintaining the interpreter much easier
- Encourages the development of other paradigms for parallelism
- Is almost entirely irrelevant in the HPC space as it neither impacts MPI or threads embedded in compiled modules

For the gory details, see David Beazley's talk on the GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU

Use Threaded Libraries

- Building blocks like NumPy and SciPy are already built with MPI and thread support via BLAS/LAPACK, MKL
- Don't reimplement solvers in pure Python
- Many of your favorite threaded libraries and packages already have bindings:
 - PyTrilinos
 - petsc4py
 - Elemental
 - SLEPc

Using Compiled Modules

Methods of using pre-compiled, threaded, GIL-free code for speed include:

- Cython
- f2py
- PyBind11
- swig
- Boost
- Ctypes
- Writing bindings in C/C++ <u>http://dan.iel.fm/posts/python-c-extensions/</u>

More control: Cython

Cython is a meant to make writing C extensions easy

- Naive usage can offer x12 speedups
- Builds on Python syntax
- Translates .pyx files to C which compiles
- Provides interfaces for using functionality from OpenMP, CPython, libc, libc++, NumPy, and more
- Works best when you can statically type variables
- Lets you turn off the GIL

More control: Cython

Generated by Cython 0.25.2

Yellow lines hint at Python interaction. Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: <u>calcpipy.c</u>

+01:	import random						
02:							
+03:	<pre>def calcpi_py(samples):</pre>						
04:	"""serially calculate Pi using only standard library functions"""						
+05:	inside = 0						
+06:	random.seed(0)						
+07:	<pre>for i in range(int(samples)):</pre>						
+08:	<pre>x = random.random()</pre>						
+09:	y = random.random()						
+10:	if $(x*x)+(y*y) < 1$:						
+11:	inside += 1						
+12:	return (4.0 * inside)/samples						

Generated by Cython 0.25.2

Yellow lines hint at Python interaction. Click on a line that starts with a "+" to see the C code that Cython generated for it.

Raw output: calcpi.c

+01:	cdef extern from "stdlib.h":
02:	<pre>cpdef long random() nogil</pre>
03:	cpdef void srandom(unsigned int) nogil
04:	cpdef const long RAND_MAX
05:	
+06:	<pre>cdef double randdbl() nogil:</pre>
07:	cdef double r
+08:	r = random()
+09:	
+10:	return r
11:	
	<pre>cpdef double calcpi(const int samples):</pre>
13:	"""serially calculate Pi using Cython library functions"""
14:	
15:	cdef double x, y
16:	
+17:	inside = 0
18:	
+19:	<pre>srandom(0)</pre>
+20:	<pre>for i in range(samples):</pre>
+21:	x = randdbl()
+22:	y = randdbl()
+23:	if $(x*x)+(y*y) < 1$:
+24:	inside += 1
+25:	<pre>return (4.0 * inside)/samples</pre>
26:	

More control: f2py

\$cat calcpi.f90

```
subroutine calcpi(samples, pi)
      REAL, INTENT(OUT) :: pi
      INTEGER, INTENT(IN) :: samples
      REAL :: x, y
      INTEGER :: i, inside
      inside = 0
      do i = 1, samples
        call random_number(x)
        call random number(y)
        if ( x**2 + y**2 <= 1.0D+00 ) then
          inside = inside + 1
        end if
       end do
       pi = 4.0 * REAL(inside) / REAL(samples)
    end subroutine
$f2py --fcompiler=qfortran -m calcpi_fortran -c calcpi.f90
$...
$python -c "import calcpi_fortran; print calcpi_fortran.calcpi(1000000)"
3.14163589478
```

Basic Profiling: cProfile & SnakeViz

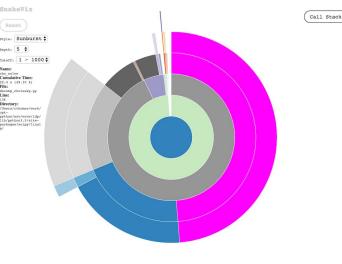
Call Stack

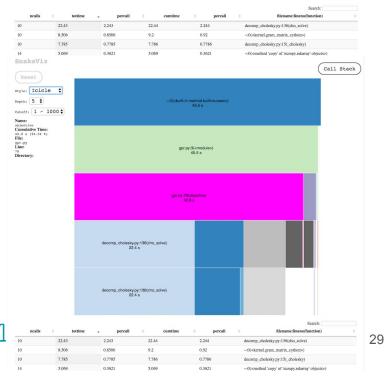
cProfile

Low-overhead profiler, from standard library. Outputs statistics on what your code is doing:

Number of function calls,

Total time spend in functions,


Time per function call, etc.


[https://docs.python.org/2/library/debug.html] [https://docs.python.org/2/library/profile.html#module-cProfile] [https://docs.python.org/2/library/profile.html#the-stats-class]

SnakeViz

Lets you visualize cProfile output in a browser: Statistics mentioned above. Visualize call stack & drill-down._____

4. decomp_cholesky.py:136(cho_solve)
3. decomp_cholesky.py:136(cho_solve)
3. decomp_cholesky.py:136(cho_solve)
2. gpr.py:78(objective)
1. gpr.py:3(«module»)
0. ~:0(<built-in method builtins.exec>)
> python -m cProfile -o out.prof my-program.py
...
> snakeviz out.prof
snakeviz web server started on 127.0.0.1:8080...
[https://jiffyclub.github.io/snakeviz/

Intel VTune Works with Python Code

VTune Amplifier

Performance analysis profiler. GUI and command-line interface.

Thread timelines. Hotspot analysis. Memory profiling. Locks & waits. Filter/zoom in timeline.

Run GUI (amplxe-gui) over NX!

• • •		NoMachine - NX5Configure-2				
🚨 💿 <no current="" project=""> - I</no>	ntel VTune Amplifier <@cori03>				\odot	
🕼 🏠 🌚 🕨 🗇 🖨	Welcome hswn64 ×					
Basic Hotspots	Hotspots by CPU Usage v	iewpoint (<u>change</u>) @			INTEL VTUNE AMPLIFIER XE 2	
Collection Log Analysis	sis Target 🔺 Analysis Type 🕷 Sun	nmary 🗠 Bottom-up 🔹 Caller/C	allee 🖸 Top-down Tree	e 🖪 Plat	form	
Function / Call Stack			~ 🛠	Q 4.	CPU Time	
				CPU 1	Viewing ∉ 1 of 15 ▶ selected st	
Function / Call Stack	Effective Time by Utilization			4	55.1% (43.497s of 78.994s)	
	Idle Poor Ok Ideal Over	Imbalance or Serial Spinning (OpenMP)	Lock Contention (OpenMP)	Other	libmkl intel lp64.so! <u>cblas_dcopy</u> -	
cblas_dcopy	78.836s 💶	0s	0s	0.0165	multiarray.cpython-35m-x86_64-li.	
fftw_cpy2d	47.362s	0s	0s	05	multiarray.cpython-35m-x86_64-li.	
fftwf_cpy2d	28.498s	0s	0s	05	multiarray.cpython-35m-x86_64-li.	
CDOUBLE_multiply	21.531s	0s	Os	05	multiarray.cpython-35m-x86_64-li. multiarray.cpython-35m-x86_64-li.	
gridrec	19.748s	0s	Os	05	libpython3.5m.so.1.0!PyCFunction	
float downcoef axis	18.983s	0s	0s	05	libmkl intel lp64.so![Unknown sta	
n1bv 32	14.722s	0s	0s	05	libpython3.5m.so.1.0! PyEval Ev	
n2fv 64	14.638s	0s	0s	05	libpython3.5m.so.1.0! <u>PyEval_Eval</u>	
float downsampling convolution	13.743s	05	0s	05		
DOUBLE divide	12.922s	0s	0s	05	libpython3.5m.so.1.0!function_cal.	
float idwt axis	12.323s	0s	0s	05	libpython3.5m.so.1.0! <u>PyObject_C</u>	
apply	11.859s	0s	0s	05	libpython3.5m.so.1.0! <u>ext_do_call</u>	
_int_free	10.186s	0s	0s	05	libpython3.5m.so.1.0! <u>PyEval_Eval</u> .	
				_	libpython3.5m.so.1.0! <u>PyEval_Ev</u>	
Q*Q*Q* 15 35 python (python (python (python (python (python (python (python (python (55 75 95 115		215 235 255	275	29s 31 ♥ Thread ♥ ■ Runr ♥ ₩ CPU ♥ ₩ CPU ♥ ♥ CPU Sag ♥ # CPU Usag	
CPU Usa	Process V Thread Any Thread V	Module 🛛 Any Module 🗠 Any U	tilizatic~ User functions +	-1 v Sh	w inline funct Y Functions only	
🚬 🔤 <no current="" proje<="" td=""><td>ect> - Intel VTune Ampli 🛛 🛪 Intel 🖲</td><td>Software Improvement Program</td><td>n 📕 🖪 cori :</td><td></td><td></td></no>	ect> - Intel VTune Ampli 🛛 🛪 Intel 🖲	Software Improvement Program	n 📕 🖪 cori :			
		[https://softy	vare intel com	ı/en-i	us/node/62811	

[https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-intel-vtune-amplifier

Part of Intel Parallel Studio, may be available as a module, e.g. at NERSC:

```
> module load vtune
```

> salloc ... --perf=vtune

> srun ... amplxe-cl -collect hotspots python my-app.py
Best practice on KNL:

-no-auto-finalize, archive and -finalize on e.g. Haswell node

[e.g. http://www.nersc.gov/assets/Uploads/04-vtune.pdf]

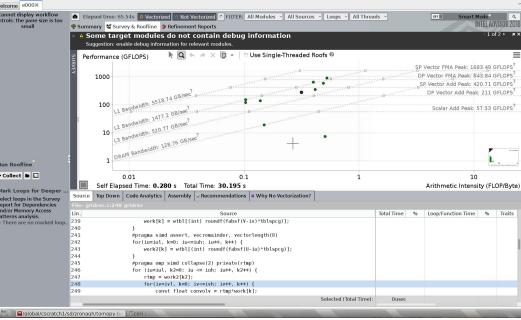
Intel Tools Screenshots of TomoPy analysis ³⁰ courtesy Zahra Ronaghi, NERSC

Intel Advisor Works with Python Code

•••		Aachine - NX	5Configure-2							
/global/cscratch1/sd/zron File View Help	nagh/tomopy-bench/advixe-hsw - Intel Advisor <@cori03>						0	 K 		
	% \$% ₽ 0									
Welcome e000x								÷		
Cannot display workflow				[OFF				
controls: the pane size is too	Elapsed time: 65.54s Ø Vectorized Not Vectorized FILTE	R: All Mo	aules V All Sources V	Loops V All	nreads V	OFF	Smart Mode	00 2018	What sho	I blue
small									What She	
	 A Some target modules do not contain deb Suggestion: enable debug information for relevant modules. 	ug info	ormation				4 1 of 2	• .* ×	Suggests	ontim
							FLOPS		Cuggeolo	opun
	Function Call Sites and Loops		Vector Issues	Self Time ▼	Total Time	Туре	GFLOPS	AI	Point out	vooto
	Iloop in gridrec at gridrec.c:248]		* 1 Potential underutil.	30.1955	30.195s	Inside vectorized	280.465	0.3	Point out	vecio
	■©[loop in gridrec at gridrec.c:238]		2 Data type conversi.	14.620s	14.620sl	Peeled/Remainder	121.200	0.1		
			2 Data type conversi.		10.577sl	Peeled/Remainder	153.323	0.1	Optimize	
	Iloop in gridrec at gridrec.c:217		1 Data type conversi.		67.119s	Scalar	139.881	0.1	Optimize	use u
	■©[loop in gridrec at gridrec.c:324]		2 Possible inefficient.		6.287s	Vectorized (Body; Pee		0.1		
	BO[loop in gridrec at gridrec.c:246]		1 Possible inefficient.		32.946s	Vectorized (Body; Re.			Works wit	h Pvt
	Bo [loop in [MKL FFT]		1 Vector register spill		2.102sl	Vectorized (Body)	355.201	0.4		iii yu
	<pre>90 [loop in _aligned_strided_to_contig_size4_srcstride0] 00 [loop in [MKL FFT]</pre>		♀ 1 Vector register spill	1.886s	1.886sl 1.086sl	Vectorized (Body) Vectorized (Body)	591.596	0.4		
	oc[loop in [MKL FFT] od[loop in [MKL FFT]				1.0135	Vectorized (Body)	910.614	0.4		
	B0 [loop in gridrec at gridrec.c:192]	1	* I vector register spin	0.892sl	0.892si	Vectorized (Body; Re.		0.5		
	©[loop in [MKL FFT]		9 1 Vector register spill		0.810sl	Vectorized (Body)	651.095	0.4		
	: [loop in gridrec at gridrec.c:321]			0.1425	6.429sl	Scalar	00110001	011		
Run Roofline	[loop in strlen] [0.090sl	0.090sl	Scalar				
	of [loop in memcmp]			0.076sl	0.076sl	Scalar				
Collect	Iloop in gridrec at gridrec.c:186]			0.068si	70.082s	Scalar				
Mark Loops for Deeper		_		0.000 /	0.000.1	<u> </u>				
Select loops in the Survey	Source Top Down Code Analytics Assembly Recommendat	ons 🛚 🛚 W	hy No Vectorization?							
Report for Dependencies				O O NoMachine - NX5Configure O /global/cscratch1/sd/zronagh/tomopy-bench/advixe-hsw - Intel Advisor <@cori03>						
and/or Memory Access Patterns analysis.					File View Help					
There are no marked loop.	239 work[k] = wtbl[(int) roundf(fabs	f(V-iv)*	tblspcg)];		6 B		× ₩ 🛥 💿			
	240 }						> / > na 🔤 🕓			
	241 #pragma simd assert, vecremainder, v 242 for(iu=iul, k=0; iu<=iuh; iu++, k++)		gth (8)		Welcome e000%					
	<pre>242 for(iu=iul, k=0; iu<=iuh; iu++, k++) 243 work2[k] = wtbl[(int) roundf(fab</pre>		*thlsnca)l:		Cannot display workflow 💿 Elapsed time: 65.54s 🗿 Vectorized 💿 Not Vectorized 🔮 FILTER: All Modules					All Modules V
	245 work2[k] = wtbt[(11t) roundr(rabsr(0-10)*tbtspcg)]; 244 }				controls: the pane size is too small Summary Survey & Roofline Refinement Reports					
	245 #pragma omp sind collapse(2) private(rtmp)						-			
	246 for (iu=iul, k2=0; iu <= iuh; iu++, k2++) {					× .			les do not contain debug	Informatio
	247 rtmp = work2[k2];						Suggestion: ena	ble debug in	formation for relevant modules.	, I
	248 for(iv=ivl, k=0; iv<=ivh; iv++, k++) {					<u>s</u>	Performance (0	FLOPS)	▶ Q < → × D +	Use Single-TI
	249 const float convolv = rtmp*work[k];					L.R.				
			5	elected (Total Ti	m	ΈY				
1 Malabal/secratch1	/sd/zronagh/tomopy-be Cori :						1000			
global/cscratch1/	su/zionagn/comopy-be micon .				-				2	
									518.74 GB/sec ²	B
							100	dwidth: 5	518.	8 •
							L1 B	num	GBISEC B	-Berry
						1		dwidth: 1	417.2 GBISEC ² 20.71 GBISEC ²	
							L2 B	num	20.77 GBISEC	and a state of the
							10	ndwidth.	20.77 GBISEC	
							LD		h. 128.76 GBISC	
							- 2 1	A Bandwidu	h: 128.76 GB sec?	
					Run Roo	filme	1 DKA			
								_		
Roofline analysis*: Performance of code in relation to				► Collect	t 🖿 🗔	C	.01	0.	.1	
						Self Elaps	ed Time: 0	0.280 s Total Time: 30.195 s	5	
					ops for Deeper So	urce Top Down	Code Analyt	tics Assembly Recommendation	s Why No Vect	
				Select loc Report for	pps in the Survey	gridrec.c:248			,, recc	
					and/or Me	emory Access		naiec	Source	
hardware limits					Patterns a	analysis. 239				

I do next? When do I stop?

mizations for your C extensions. prization opportunities.


of threads.

thon and C/C++/Fortran code.

R

Ρ hardware limits.

Memory bandwidth or compute bound?

00

Scaling Up Python MPI(4py) • Caveats • Parallel I/O

mpi4py: why MPI?

- It is (still) the HPC paradigm for inter-process communications
- MPI makes full use of HPC environments
- Well-supported tools exist for parallel development with MPI – even when using Python
- Python-MPI bindings have been developed since 1996

mpi4py: why mpi4py?

- Pythonic wrapping of the system's native MPI
- provides almost all MPI-1,2 and common MPI-3 features
- very well maintained
- distributed with major Python distributions
- portable and scalable
 - requires only: NumPy, Cython (build only), and an MPI
 - used to run a Python application on 786,432 cores
 - capabilities only limited by the system MPI
- http://mpi4py.readthedocs.io/en/stable/

mpi4py: running

- mpi4py jobs are launched like other MPI binaries:
 - o mpiexec -np \${RANKS} python \${PATH_TO_SCRIPT}
 - Just running python \${PATH_TO_SCRIPT} should always work for a single-rank case
- an independent Python interpreter launches per rank
 - \circ $\,$ no automatic shared memory, files, or state
 - crashing an interpreter does crash the MPI program
 - it is possible to embed an interpreter in a C/C++ program and launch an interpreter that way
- if you crash or have trouble with simple codes, remember:
 - CPython is a C binary and mpi4py is a binding
 - you will likely get core files and mangled stack traces
 - use Id or otool to check which MPI mpi4py is linked against
 - ensure Python, mpi4py, and your code are available on all nodes and libraries and paths are correct
 - try running with a single rank
 - rebuild with debugging symbols

mpi4py: startup

- Importing and MPI initialization:
- importing mpi4py allows you to set runtime configuration options (e.g. automatic initialization, thread_level) via mpi4py.rc()
- importing the MPI submodule calls MPI_Init() by default
 - calling Init() or Init_thread() more than once violates the MPI standard
 - This will lead to a Python exception or an abort in C/C++
 - use Is_initialized() to test for initialization

mpi4py: shutdown

- MPI_Finalize() will automatically run at interpreter exit
- use Is_finalized() to test for finalization when uncertain if a module called MPI_Finalize()
- calling Finalize() more than once exits the interpreter with an error and may crash C/C++/Fortran modules

mpi4py and program structure

Any code, even if after MPI_Init(), unless reserved to a given rank will run on all ranks:

```
from mpi4py import MPI
```

```
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()
```

```
if rank%2 == 0:
    print("Hello from an even rank: %d" %(rank))
```

```
comm.Barrier()
print("Goodbye from rank %d" %(rank))
```

mpi4py: datatypes

- Buffers, MPI datatypes, and NumPy objects aren't pickled
 - Transmitted near the speed of C/C++
 - NumPy datatypes are autoconverted to MPI datatypes
 - buffers may need to be described as a 2/3-list/tuple
 - [data, MPI.DOUBLE] for a single double
 - [data,count,MPI.INT] for an array of integers
 - Custom MPI datatypes are supported
 - Use the capitalized methods, eg: Recv(), Send()
- All other objects require pickleing
 - pickling and unpickling have significant overheads
 - Use the lowercase methods, eg: recv(),send()
- When in doubt, ask if what is being processed can be represented as memory buffer or only as PyObject

mpi4py: communicators

- The two default communicators exist at startup:
 - COMM_WORLD
 - COMM_SELF
- For safety, duplicate communicators before use in or with libraries and modules you didn't write
- Only break from the standard are methods:

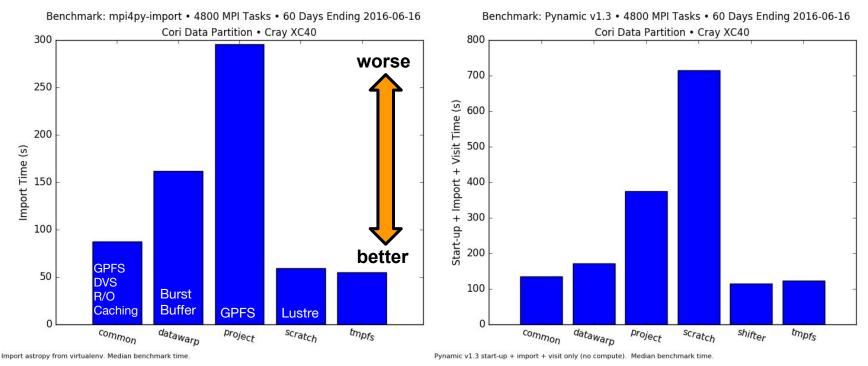
Is_inter() and Is_intra()

mpi4py: collectives and operations

• Collectives operating on Python objects are naive for example:

[mpirun -n 8 \$(which python) ./basic_features.py **************** Rank Ø sees local_dict as {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'g': 'gee whiz', 'f': 6, 'h': ('hi', 'there')} Rank 0 sees local_list_max as [0, 1, 2, 3] Rank 0 sees local_list_sum as [0, 1, 2, 3] Rank 0 sees local_string as This is a string. Rank 0 sees local_tuple as (0, 0, 0, 0, 0, 0, 0, 0) Rank 0 sees local_np_array as [0 1 2 3 4 5 6 7 8 9] Rank 6 sees local_dict as None Rank 6 sees local_list_max as [0, 6, 12, 18] Rank 6 sees local_list_sum as [0, 6, 12, 18] Rank 6 sees local_string as This should be fun! Rank 6 sees local_tuple as (6, 6, 6, 6, 6, 6, 6, 6) Rank 6 sees local np array as [0 1 2 3 4 5 6 7 8 9] ************** Running collective operations Rank Ø sees local_dict as a after scatter using None Rank 0 sees local_list_max as [0, 7, 14, 21] after allreduce using max Rank 0 sees local_list_sum as [0, 1, 2, 3, 0, 1, 2, 3, 0, 2, 4, 6, 0, 3, 6, 9, 0, 4, 8, 12, 0, 5, 10, 15, 0, 6, 12, 18, 0, 7, 14, 21] after reduce using sum Rank 0 sees local_string as This is a string. after bcast using defaults Rank Ø sees local_tuple as [0, 1, 2, 3, 4, 5, 6, 7] after alltoall using defaults Rank Ø sees local np array as [Ø 8 16 24 32 40 48 56 64 72] after allreduce using sum Rank 6 sees local_dict as f after scatter using None Rank 6 sees local_list_max as [0, 7, 14, 21] after allreduce using max Rank 6 sees local_list_sum as None after reduce using sum Rank 6 sees local_string as This is a string. after bcast using defaults Rank 6 sees local tuple as [0, 1, 2, 3, 4, 5, 6, 7] after alltoall using defaults Rank 6 sees local_np_array as [0 8 16 24 32 40 48 56 64 72] after allreduce using sum

- Collective reduction operations on Python objects are mostly serial
- Casing convention applies to methods:
 - lowercased methods will work for general Python objects (albeit slowly)
 - uppercase methods will work for NumPy/MPI data types at near C speed


Parallel I/O and h5py

- General Python I/O isn't MPI-safe
- Beware pre-packaged h5py
- (>>> import h5py [>>> h5py.get_config().mpi
 True_
- Requires mpi4py and the mpicc used to compile hdf5, mpi4py, and h5py must match
- As easy to use as:
 - f = h5py.File('myfile.hdf5', 'w',

driver='mpio', comm=MPI.COMM_WORLD)

• All changes to file structure or metadata of a file must be performed on all ranks with an open file

Issues Affecting Python at Scale

- Python's "import" statement is file metadata intensive (.py, .pyc, .so open/stat calls).
- Becomes more severe as the number of Python processes trying to access files increases.
- Result: Very slow times to just start Python applications at larger concurrency (MPI).
- Storage local to compute nodes, use of containers (Shifter) helps fix:
 - Eliminates metadata calls off the compute nodes.
 - In containers, paths to .so libraries can be cached via ldconfig.
- Other approaches:
 - Ship software stack to compute nodes (e.g., python-mpi-bcast).
 - Install software to read-only/cache-enabled file systems.
 - See also <u>Spindle</u> (Scalable Shared Library Loading).

Conclusion Next (Questions?)

Conclusion

- NERSC, ALCF, and OLCF recognize, welcome, and want to support new and experienced Python users in HPC.
- Using Python on our systems can be as easy as a module load, but can be customized by users.
- We have provided some guidance and best practices to help users improve Python performance in HPC context.
- Try out some of the profiling and performance analysis tools described here, and ask for help if you get stuck.
- While there are many challenges for Python in HPC, if users, staff, & vendors work together, there are many rewards.

More Resources

Your NERSC and LCF Python contacts:

- NERSC: Rollin Thomas rc
- ALCF: William Scullin
- **OLCF:** Matt Belhorn

rcthomas@lbl.gov

wscullin@alcf.anl.gov

belhornmp@ornl.gov

Documentation:

- NERSC: <u>http://www.nersc.gov/users/data-analytics/data-analytics/python/</u>
- OLCF: <u>https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices/</u>

Other presentations:

ALCF Performance Workshop (May 2017):

Python on HPC Best Practices http://www.alcf.anl.gov/files/scullin-python.pdf

NERSC Intel Python Training Event (March 2017):

Optimization Example <u>http://www.nersc.gov/assets/Uploads/Intel-tomopy-Mar2017.pdf</u> by Oleksandr Pavlyk (Intel)

Backup Material

Cross-Compiling on Crays with Pip

Instruct Cray compiler wrappers to target the login node architecture so code will run everywhere module unload craype-interlagos module load craype-istanbul

```
virualenv --python=python2.7 "${VENV_NAME}"
source "${VENV NAME}/bin/activate"
```

If pip is badly out of date, the TLS certificates may not be trusted.
pip install --trusted-host pypi.python.org --upgrade pip

Set envvars needed to guide pip for cross-compiling and instruct it to build from source CC=cc MPICC=cc pip install -v --no-binary :all: mpi4py

```
# Set envvars needed for pip to use external dependencies. See package documentation.
HDF5_DIR="${CRAY_HDF5_DIR}/${PE_ENV}/${GNU_VERSION%.*}"
CC=cc HDF5_MPI="ON" HDF5_DIR="${HDF5_DIR}" pip install -v --no-binary :all: h5py
deactivate "${VENV_NAME}"
module unload craype-istanbul
module load craype-interlagos
```