
Python in HPC

Rollin Thomas (NERSC), William Scullin (ALCF),
and Matt Belhorn (OLCF)

IDEAS Webinar
June 7, 2017

Scope of This Webinar
What we want to do:

● Explain what NERSC, ALCF, and OLCF are doing to
welcome and support Python users in HPC.

● Provide guidance and best practices to help users
improve Python performance at the Centers.

● Point out some great tools that now exist to support
developers of Python in HPC.

What we assume:

● You know and use Python and are familiar with the
Scientific Python Stack, or

● You know and use HPC and are curious about using
Python in your own HPC work. 2

Getting Started with Python Resources

https://www.python.org/about/gettingstarted/

https://wiki.python.org/moin/BeginnersGuide

https://www.codecademy.com/learn/python

https://www.coursera.org/specializations/python

https://software-carpentry.org/lessons/

https://pymotw.com/

3
https://xkcd.com/353/

https://www.python.org/about/gettingstarted/
https://www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/BeginnersGuide
https://www.codecademy.com/learn/python
https://www.codecademy.com/learn/python
https://www.coursera.org/specializations/python
https://www.coursera.org/specializations/python
https://software-carpentry.org/lessons/
https://pymotw.com/
https://xkcd.com/353/
https://xkcd.com/353/

Agenda

● Motivation
How is Python relevant to HPC?

● Practical Matters
Using Python at NERSC, ALCF, and OLCF

● Single Node Performance
Threads ● Cython, Extensions ● Profiling

● Scaling Up Python
MPI(4py) ● Caveats ● Parallel I/O

● Conclusion & More Resources

4[We will pause for 1-2 questions at each breakpoint,
Matt will manage Q&A via Webex chat.]

Motivation
How is Python relevant to HPC?

5

Python is a Very Popular Language

bestprogramminglanguagefor.me

www.tiobe.com/tiobe-index

codeval.com 6

“What programming
language should I learn?”

“What programming
languages are good for
Data Science?”

“What programming
languages are widely used in
industry, science, or
ML/coding challenges?”

Why is Python Popular?

Makes a great first impression:
Clean, clear syntax.
Multi-paradigm, interpreted.
Duck typing, garbage collection.
“Instant productivity!”

Keeps up with users’ needs:
Flexible, full-featured data structures.
Extensive standard libraries.
Reusable open-source packages (PyPI).
Package management tools.
Good unit testing frameworks.
Extensible with C/C++/Fortran for
 optimizing high-performance kernels.
“Instant productivity,
performance when you need it” (?)

7

https://pypi.python.org/pypi

The Scientific Python Stack

Primary Uses:

● Script workflows for both data analysis and simulations

● Perform exploratory, interactive data analytics & viz
8

Python at the HPC Center

Observation: High productivity has driven
the growth of Python in the sciences.

...Not high performance (so much).

But supporting Python is no longer optional
at HPC centers like NERSC, ALCF, OLCF.

Maximizing Python performance on these
systems can be (ok, is) challenging:

● Interpreted, dynamic languages are
difficult to optimize.

● Python’s global interpreter lock (GIL)
has consequences for parallelism.

● Language design and implementation
choices made without considering
realities of HPC.

9

PyFR: Gordon Bell & SC16 Best Paper Finalist

10

● Performance portability enabled by Python:
CFD from a single code base supporting CPU and GPU
architectures, a few x1000 lines of code.

● There is a place for Python at the highest levels of
performance in supercomputing.

[http://sc16.supercomputing.org/2016/08/23/finalists-compete-prestigious-acm-gordon-bell-prize-high-performance-computing/]
[http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees]

http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees
http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees
http://sc16.supercomputing.org/2016/09/21/sc16-announces-best-paper-nominees

Basic Guidelines for Python in HPC

● Identify and exploit parallelism at the core,
node, and cluster levels.

● Understand and apply numpy array syntax
and its broadcasting rules (skipped here):
[https://docs.scipy.org/doc/numpy/reference/arrays.html]
[https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]

● Measure your codes’ performance using
profiling tools.

● Ask for help.
11

https://docs.scipy.org/doc/numpy/reference/arrays.html
https://docs.scipy.org/doc/numpy/reference/arrays.html
https://docs.scipy.org/doc/numpy/reference/arrays.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Practical Matters
Using Python at NERSC, ALCF, & OLCF

12

Python at NERSC, ALCF, & OLCF

● Environment Modules
[http://modules.sourceforge.net]

“The Environment Modules package provides for the dynamic modification
of a user's environment via modulefiles.”

module avail python
module load python
module swap python/2.7 python/3.5
module help…

● Or install your own Python (many options).

● System Python (e.g. /usr/bin/python),
use at your own risk.

pytho
n 3.5

pytho
n 2.7

13

http://modules.sourceforge.net
http://modules.sourceforge.net

Python Builds and Distributions
Centers may build, install Python & packages from
… source,

… package managers like Spack*,
[https://spack.readthedocs.io/en/latest/]

… using distribution like Anaconda “and/or” Intel,
[https://docs.continuum.io/anaconda/]

[https://software.intel.com/en-us/distribution-for-python]

… or all of the above.

Centers also let users set up their own!
● Packages depending on MPI should always be built

against system vendor-provided libraries.

● Anaconda distribution comes with Intel MKL built-in.
Intel distribution heavily leverages Anaconda tools.

14
[* Spack: An upcoming IDEAS Webinar topic.]

https://spack.readthedocs.io/en/latest/
https://spack.readthedocs.io/en/latest/
https://docs.continuum.io/anaconda/
https://docs.continuum.io/anaconda/
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python

Customizing I: Virtualenv
User-controlled isolated python environments

● Site packages root under your control
● Activated venvs preclude other python interpreters
● Semi-conflicts with environment modules

○ Setup environment modules prior to activation

$ virtualenv -p python2.7 /path/to/my_env
$. /path/to/my_env/bin/activate
(my_env)$ pip install --trusted-host \
 pypi.python.org -U pip
(my_env)$ CC=cc MPICC=cc pip install -v \
 --no-binary :all: mpi4py
(my_env)$ deactivate

15

Customizing I: Virtualenv (cont’d)
Your packages with an external interpreter

● Install your own packages in your venv
● Use them with external python within your python scripts
● Mix-and-match with center-provided packages

#!/usr/bin/env python2.7
activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

16

N.B.: Packages installed in the venv will supercede
 versions installed at the site level.

Customizing II: Conda environments
Anaconda provides the conda tool:

[https://conda.io/docs/index.html]

● Create, update, share “environments.”

● Incompatible with virtualenv, replaces it.

● Many pre-built packages organized in custom “channels.”

● Leverage your center’s Anaconda install to create custom
environments with the conda tool.

Your own Anaconda/“Miniconda” installation:
wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
/bin/bash Miniconda2-latest-Linux-x86_64.sh -b -p $PREFIX
source $PREFIX/bin/activate
conda install basemap yt…

Your own Intel Python Installation:
conda create -c intel -n idp intelpython2_core python=2
source activate idp

17

https://conda.io/docs/index.html
https://conda.io/docs/index.html

Python at NERSC
NERSC-built:

module load python[/2.7.9]
python_base/2.7.9
numpy/1.9.2
scipy/0.15.1
matplotlib/1.4.3
ipython/3.1.0

Anaconda:
module load python/2.7-anaconda
module load python/3.5-anaconda

NERSC-built:
None

Anaconda:
module load [python/2.7-anaconda]
module load python/3.5-anaconda

[default]

[default]

Conda env via module (either system)
module load python/2.7-anaconda
conda create -n myenv numpy...
source activate myenv

18[http://www.nersc.gov/users/data-analytics/data-analytics/python/]

http://www.nersc.gov/users/data-analytics/data-analytics/python/
http://www.nersc.gov/users/data-analytics/data-analytics/python/
http://www.nersc.gov/users/data-analytics/data-analytics/python/

Python at ALCF
● Every system we run is a cross-compile environment except Cooley
● pip/distutils/setuptools/anaconda don’t play well with cross-compiling
● Blue Gene/Q Python is manually mantained

○ Instructions on use are available in: /soft/cobalt/examples/python
○ Modules built on request

● Theta offers Python either as:
○ Intel Python - managed and used via Conda

■ We prefer users to install their own environments
■ Users will need to set up their environment to use the Cray MPICH

compatibility ABI and strictly build with the Intel MPI wrappers:
http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

○ ALCF Python managed via Spack and loadable via modules
module load alcfpython/2.7.13-20170513
■ A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...
■ We build and rebuild alcfpython via Spack to emphasize performance

and Cray compatibility
■ Use of virtualenv is recommended - do not mix conda and virtualenv!!!
■ We’ll build any package with a Spack spec on request

19

Python at OLCF
Provided interpreters:

module load python[/2.7.9]
 python/3.5.1

Major Provided Packages:
python_numpy/1.9.2
python_scipy/0.15.1
python_matplotlib/1.2.1
python_ipython/3.0.0
python_mpi4py/1.3.1
python_h5py/2.6.0
python_netcdf4/1.1.7

Anaconda:
● Prefer to build your own
● Generally interferes with Tcl Environment Modules

Custom package install paths:
● Prefer NFS project space /ccs/proj/${PROJECTID}
● Take care with user site-packages, ${HOME}
● Avoid /lustre/atlas

20

Further site-specific information on the OLCF Website
[https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olc
f-python-best-practices]

https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices
https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices
https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices

Single Node Performance
Threads ● Cython, Extensions ●
Profiling

21

Structuring a HPC Python code

22

S
hare of execution tim

e

Parallelism & Python: A Word on the GIL
To keep memory coherent, Python only allows a single thread to run in the
interpreter's memory space at once. This is enforced by the Global Interpreter
Lock, or GIL.

The GIL isn’t all bad. It:
● Is mostly sidestepped for I/O (files and sockets)
● Makes writing modules in C much easier
● Makes maintaining the interpreter much easier
● Encourages the development of other paradigms for parallelism
● Is almost entirely irrelevant in the HPC space as it neither impacts MPI or

threads embedded in compiled modules

For the gory details, see David Beazley's talk on the GIL:
https://www.youtube.com/watch?v=fwzPF2JLoeU

23

http://blip.tv/file/2232410
http://blip.tv/file/2232410

Use Threaded Libraries
● Building blocks like NumPy and SciPy are already built

with MPI and thread support via BLAS/LAPACK, MKL
● Don’t reimplement solvers in pure Python
● Many of your favorite threaded libraries and packages

already have bindings:
○ PyTrilinos
○ petsc4py
○ Elemental
○ SLEPc

24

Using Compiled Modules
Methods of using pre-compiled, threaded, GIL-free code for
speed include:

● Cython
● f2py
● PyBind11
● swig
● Boost
● Ctypes
● Writing bindings in C/C++

http://dan.iel.fm/posts/python-c-extensions/

25

http://dan.iel.fm/posts/python-c-extensions/
http://dan.iel.fm/posts/python-c-extensions/

More control: Cython

Cython is a meant to make writing C extensions easy

● Naive usage can offer x12 speedups
● Builds on Python syntax
● Translates .pyx files to C which compiles
● Provides interfaces for using functionality from OpenMP,

CPython, libc, libc++, NumPy, and more
● Works best when you can statically type variables
● Lets you turn off the GIL

26

More control: Cython

27

More control: f2py

28

Basic Profiling: cProfile & SnakeViz

29

cProfile
Low-overhead profiler, from standard library.
Outputs statistics on what your code is doing:

Number of function calls,
Total time spend in functions,
Time per function call, etc.

[https://docs.python.org/2/library/debug.html]
[https://docs.python.org/2/library/profile.html#module-cProfile]
[https://docs.python.org/2/library/profile.html#the-stats-class]

SnakeViz
Lets you visualize cProfile output in a browser:

Statistics mentioned above.
Visualize call stack & drill-down.

> python -m cProfile -o out.prof my-program.py
...
> snakeviz out.prof
snakeviz web server started on 127.0.0.1:8080…

[https://jiffyclub.github.io/snakeviz/]

https://docs.python.org/2/library/debug.html
https://docs.python.org/2/library/debug.html
https://docs.python.org/2/library/profile.html#module-cProfile
https://docs.python.org/2/library/profile.html#module-cProfile
https://docs.python.org/2/library/profile.html#the-stats-class
https://docs.python.org/2/library/profile.html#the-stats-class
https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/

Intel VTune Works with Python Code

30

[https://software.intel.com/en-us/node/628111]
[https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-intel-vtune-amplifier]

VTune Amplifier
Performance analysis profiler.
GUI and command-line interface.

Thread timelines.
Hotspot analysis.
Memory profiling.
Locks & waits.
Filter/zoom in timeline.

Run GUI (amplxe-gui) over NX!

Part of Intel Parallel Studio, may be available as a module, e.g. at NERSC:
> module load vtune
> salloc … --perf=vtune
…
> srun … amplxe-cl -collect hotspots python my-app.py

Best practice on KNL:
-no-auto-finalize, archive and -finalize on e.g. Haswell node
[e.g. http://www.nersc.gov/assets/Uploads/04-vtune.pdf] Intel Tools Screenshots of TomoPy analysis

courtesy Zahra Ronaghi, NERSC

https://software.intel.com/en-us/node/628111
https://software.intel.com/en-us/node/628111
https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-intel-vtune-amplifier
https://software.intel.com/en-us/videos/performance-analysis-of-python-applications-with-intel-vtune-amplifier
http://www.nersc.gov/assets/Uploads/04-vtune.pdf

Intel Advisor Works with Python Code

31

Roofline analysis*:
Performance of code in relation to
hardware limits.
Memory bandwidth or compute bound?

What should I do next? When do I stop?
Suggests optimizations for your C extensions.
Point out vectorization opportunities.
Optimize use of threads.
Works with Python and C/C++/Fortran code.

[* Roofline: An upcoming IDEAS Webinar topic.]

Scaling Up Python
MPI(4py) ● Caveats ● Parallel I/O

32

mpi4py: why MPI?

● It is (still) the HPC paradigm for inter-process
communications

● MPI makes full use of HPC environments
● Well-supported tools exist for parallel development with

MPI – even when using Python
● Python-MPI bindings have been developed since 1996

33

mpi4py: why mpi4py?
● Pythonic wrapping of the system’s native MPI
● provides almost all MPI-1,2 and common MPI-3 features
● very well maintained
● distributed with major Python distributions
● portable and scalable

○ requires only: NumPy, Cython (build only), and an MPI
○ used to run a Python application on 786,432 cores
○ capabilities only limited by the system MPI

● http://mpi4py.readthedocs.io/en/stable/

34

http://mpi4py.scipy.org/
http://mpi4py.scipy.org/

mpi4py: running
● mpi4py jobs are launched like other MPI binaries:

○ mpiexec –np ${RANKS} python ${PATH_TO_SCRIPT}
○ Just running python ${PATH_TO_SCRIPT} should always work for a

single-rank case
● an independent Python interpreter launches per rank

○ no automatic shared memory, files, or state
○ crashing an interpreter does crash the MPI program
○ it is possible to embed an interpreter in a C/C++ program and launch an

interpreter that way
● if you crash or have trouble with simple codes, remember:

○ CPython is a C binary and mpi4py is a binding
○ you will likely get core files and mangled stack traces
○ use ld or otool to check which MPI mpi4py is linked against
○ ensure Python, mpi4py, and your code are available on all nodes and

libraries and paths are correct
○ try running with a single rank
○ rebuild with debugging symbols

35

mpi4py: startup
● Importing and MPI initialization:
● importing mpi4py allows you to set runtime configuration

options (e.g. automatic initialization, thread_level) via
mpi4py.rc()

● importing the MPI submodule calls MPI_Init() by default
○ calling Init() or Init_thread() more than once

violates the MPI standard
○ This will lead to a Python exception or an abort in

C/C++
○ use Is_initialized() to test for initialization

36

mpi4py: shutdown
● MPI_Finalize() will automatically run at interpreter exit
● use Is_finalized()to test for finalization when uncertain

if a module called MPI_Finalize()
● calling Finalize() more than once exits the interpreter

with an error and may crash C/C++/Fortran modules

37

mpi4py and program structure

Any code, even if after MPI_Init(), unless reserved to a
given rank will run on all ranks:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()

if rank%2 == 0:
 print(“Hello from an even rank: %d” %(rank))

comm.Barrier()
print(“Goodbye from rank %d” %(rank))

38

mpi4py: datatypes
● Buffers, MPI datatypes, and NumPy objects aren’t pickled

○ Transmitted near the speed of C/C++
○ NumPy datatypes are autoconverted to MPI datatypes
○ buffers may need to be described as a 2/3-list/tuple

■ [data, MPI.DOUBLE] for a single double
■ [data,count,MPI.INT] for an array of integers

○ Custom MPI datatypes are supported
○ Use the capitalized methods, eg: Recv(), Send()

● All other objects require pickleing
○ pickling and unpickling have significant overheads
○ Use the lowercase methods, eg: recv(),send()

● When in doubt, ask if what is being processed can be
represented as memory buffer or only as PyObject

39

mpi4py: communicators
● The two default communicators exist at startup:

○ COMM_WORLD
○ COMM_SELF

● For safety, duplicate communicators before use in or with
libraries and modules you didn’t write

● Only break from the standard are methods:
 Is_inter() and Is_intra()

40

mpi4py: collectives and operations
● Collectives operating on Python objects are naive for example:

● Collective reduction operations on Python objects are mostly serial
● Casing convention applies to methods:

○ lowercased methods will work for general Python objects (albeit slowly)
○ uppercase methods will work for NumPy/MPI data types at near C speed

41

Parallel I/O and h5py

● General Python I/O isn’t MPI-safe
● Beware pre-packaged h5py
● Confirm MPI support before using:

● Requires mpi4py and the mpicc used to compile hdf5,
mpi4py, and h5py must match

● As easy to use as:
f = h5py.File('myfile.hdf5', 'w',
 driver='mpio', comm=MPI.COMM_WORLD)

● All changes to file structure or metadata of a file must be
performed on all ranks with an open file

42

Issues Affecting Python at Scale

● Python’s “import” statement is file metadata intensive (.py, .pyc, .so open/stat calls).
● Becomes more severe as the number of Python processes trying to access files increases.
● Result: Very slow times to just start Python applications at larger concurrency (MPI).
● Storage local to compute nodes, use of containers (Shifter) helps fix:

○ Eliminates metadata calls off the compute nodes.
○ In containers, paths to .so libraries can be cached via ldconfig.

● Other approaches:
○ Ship software stack to compute nodes (e.g., python-mpi-bcast).
○ Install software to read-only/cache-enabled file systems.
○ See also Spindle (Scalable Shared Library Loading).

better

worse

GPFS
Burst
Buffer

GPFS
DVS
R/O
Caching Lustre

43

https://github.com/rainwoodman/python-mpi-bcast/wiki/NERSC
https://computation.llnl.gov/projects/spindle

Conclusion Next (Questions?)

44

Conclusion

● NERSC, ALCF, and OLCF recognize, welcome, and want
to support new and experienced Python users in HPC.

● Using Python on our systems can be as easy as a
module load, but can be customized by users.

● We have provided some guidance and best practices to
help users improve Python performance in HPC context.

● Try out some of the profiling and performance analysis
tools described here, and ask for help if you get stuck.

● While there are many challenges for Python in HPC, if
users, staff, & vendors work together, there are many
rewards.

45

More Resources
Your NERSC and LCF Python contacts:

NERSC: Rollin Thomas rcthomas@lbl.gov
ALCF: William Scullin wscullin@alcf.anl.gov
OLCF: Matt Belhorn belhornmp@ornl.gov

Documentation:
NERSC: http://www.nersc.gov/users/data-analytics/data-analytics/python/
OLCF: https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices/

Other presentations:
ALCF Performance Workshop (May 2017):

Python on HPC Best Practices http://www.alcf.anl.gov/files/scullin-python.pdf

NERSC Intel Python Training Event (March 2017):
Optimization Example http://www.nersc.gov/assets/Uploads/Intel-tomopy-Mar2017.pdf
by Oleksandr Pavlyk (Intel)

46

http://www.nersc.gov/users/data-analytics/data-analytics/python/
https://www.olcf.ornl.gov/training-event/2016-olcf-user-conference-call-olcf-python-best-practices/
http://www.alcf.anl.gov/files/scullin-python.pdf
http://www.nersc.gov/assets/Uploads/Intel-tomopy-Mar2017.pdf

Backup Material

47

Cross-Compiling on Crays with Pip

Instruct Cray compiler wrappers to target the login node architecture so code will run
everywhere
module unload craype-interlagos
module load craype-istanbul

virualenv --python=python2.7 "${VENV_NAME}"
source "${VENV_NAME}/bin/activate"

If pip is badly out of date, the TLS certificates may not be trusted.
pip install --trusted-host pypi.python.org --upgrade pip

Set envvars needed to guide pip for cross-compiling and instruct it to build from source
CC=cc MPICC=cc pip install -v --no-binary :all: mpi4py

Set envvars needed for pip to use external dependencies. See package documentation.
HDF5_DIR="${CRAY_HDF5_DIR}/${PE_ENV}/${GNU_VERSION%.*}"
CC=cc HDF5_MPI="ON" HDF5_DIR="${HDF5_DIR}" pip install -v --no-binary :all: h5py
deactivate "${VENV_NAME}"
module unload craype-istanbul
module load craype-interlagos

48

