

Using the Roofline Model and Intel Advisor

Samuel Williams

ABORATORY

Computational Research Division Lawrence Berkeley National Lab

Tuomas Koskela

NERSC Lawrence Berkeley National Lab

Acknowledgements

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.
- This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
- Special Thanks to:

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

- Zakhar Matveev, Intel Corporation •
- Roman Belenov, Intel Corporation

LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction

Performance Models and Tools

- Identify performance bottlenecks
- Motivate software optimizations
- **Determine when we're done optimizing**
 - Assess performance relative to machine capabilities ٠
 - Motivate need for algorithmic changes ٠
- Predict performance on future machines / architectures
 - Sets realistic expectations on performance for future procurements
 - Used for HW/SW Co-Design to ensure future architectures are well-suited for the computational needs of today's applications.

Performance Models / Simulators

- Historically, many performance models and simulators tracked latencies to predict performance (i.e. counting cycles)
- The last two decades saw a number of latency-hiding techniques...
 - Out-of-order execution (hardware discovers parallelism to hide latency) ٠
 - HW stream prefetching (hardware speculatively loads data)
 - Massive thread parallelism (independent threads satisfy the latency-bandwidth product) ullet
- Effectively latency hiding has resulted in a shift from a latency-limited computing regime to a **throughput-limited computing regime**

Roofline Model

- The Roofline Model is a throughputoriented performance model...
 - Tracks rates not time
 - Augmented with Little's Law (concurrency = latency*bandwidth)
 - Independent of ISA and architecture (applies to CPUs, GPUs, Google TPUs¹, etc...)

Three main components:

- Machine Characterization (realistic performance potential of the system)
- Monitoring (characterize application's execution)
- Application Models (how well could my kernel perform with perfect compilers, procs, ...)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

(DRAM) Roofline

- Ideally, we could always attain peak Flop/s
- However, finite locality (reuse) limits performance.
- Plot the performance bound using Arithmetic Intensity (AI) as the xaxis...
 - Perf Bound = min (peak Flop/s, peak GB/s * AI)
 - AI = Flops / Bytes presented to DRAM
 - Log-log makes it easy to doodle, extrapolate performance, etc...
 - Kernels with AI less than machine balance are ultimately memory bound.

Roofline Examples

- Typical machine balance is 5-10 flops per byte...
 - 40-80 flops per double to exploit compute capability •
 - Artifact of technology and money ٠
 - Unlikely to improve ٠
- Consider STREAM Triad...

#pragma omp parallel for for(i=0;i<N;i++){</pre> Z[i] = X[i] + alpha*Y[i];

- 2 flops per iteration ٠
- Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i]) ٠
- AI = 0.166 flops per byte == Memory bound

Roofline Examples

- Conversely, 7-point constant coefficient stencil...
 - 7 flops ٠
 - 8 memory references (7 reads, 1 store) per point ٠
 - Cache can filter all but 1 read and 1 write per point
 - AI = 0.43 flops per byte == memory bound, •

```
but 3x the flop rate
```

```
#pragma omp parallel for
for(k=1;k<dim+1;k++){</pre>
for(j=1;j<dim+1;j++){</pre>
for(i=1;i<dim+1;i++){</pre>
  int ijk = i + j*jStride + k*kStride;
  new[ijk] = -6.0*old[ijk
                 + old[iik-1
                 + old[ijk+1
                 + old[ijk-jStride]
                 + old[ijk+jStride]
                 + old[ijk-kStride]
                 + old[ijk+kStride];
}}}
```


7-point Stencil

Hierarchical Roofline

- Real processors have multiple levels of memory
 - Registers •
 - L1, L2, L3 cache •
 - MCDRAM/HBM (KNL/GPU device memory)
 - DDR (main memory) ٠
 - NVRAM (non-volatile memory) •
- We may measure a bandwidth and define an AI for each level
 - A given application / kernel / loop nest will thus have multiple Al's
 - A kernel could be DDR-limited...

Hierarchical Roofline

- Real processors have multiple levels of memory
 - Registers •
 - L1, L2, L3 cache •
 - MCDRAM/HBM (KNL/GPU device memory)
 - DDR (main memory) ٠
 - NVRAM (non-volatile memory) ٠
- We may measure a bandwidth and define an AI for each level
 - A given application / kernel / loop nest will thus have multiple Al's
 - A kernel could be DDR-limited...
 - or MCDRAM-limited depending on relative • bandwidths and Al's

Data, Instruction, Thread-Level Parallelism...

- We have assumed one can attain peak flops with high locality.
- In reality, this is premised on sufficient...
 - Use special instructions (e.g. fused multiply-add) ٠
 - Vectorization (16 flops per instruction) •
 - unrolling, out-of-order execution (hide FPU latency) ٠
 - OpenMP across multiple cores
- Without these,
 - Peak performance is not attainable ٠
 - Some kernels can transition from memory-bound to compute-bound
 - n.b. in reality, DRAM bandwidth is often tied to DLP and ٠ TLP (single core can't saturate BW w/scalar code)

ICE BERKELEY NATIONAL LABORATORY

Roofline using ERT, VTune, and SDE

Basic Roofline Modeling

Machine Characterization

Potential of my target system

- How does my system respond to a lack of FMA, DLP, ILP, TLP?
- How does my system respond to reduced AI (i.e. memory/cache bandwidth)?
- How does my system respond to NUMA, strided, or random memory access patterns?

Application Instrumentation Properties of my app's execution • What is my app's real AI? How does AI vary with memory

- level?
- How well does my app vectorize?
- Does my app use FMA?

How Fast is My Target System?

GFLOPs / sec

Challenges:

- Too many systems; new ones each year •
- Voluminous documentation on each
- Real performance often less than "Marketing Numbers"
- Compilers can "give up" on big loops
- Empirical Roofline Toolkit (ERT)
 - Characterize CPU/GPU systems lacksquare
 - Peak Flop rates
 - Bandwidths for each level of memory
 - **MPI+OpenMP/CUDA == multiple GPUs**
- https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Application Instrumentation Can Be Hard...

- Flop counters can be broken/missing in production HW (Haswell)
- Counting Loads and Stores is a poor proxy for data movement as they don't capture reuse
- Counting L1 misses is a poor proxy for data movement as they don't account for HW prefetching.
- DRAM counters are accurate, but are privileged and thus nominally inaccessible in user mode
- OS/kernel changes must be approved by vendor (e.g. Cray) and the center (e.g. NERSC)

Application Instrumentation

- NERSC/CRD (==NESAP/SUPER) collaboration...
 - Characterize applications running on NERSC production systems
 - Use **Intel SDE** (binary instrumentation) to create software Flop counters (could use Byfl as well)
 - Use Intel VTune performance tool (NERSC/Cray approved) to access uncore counters
 - **Produced accurate measurement of Flop's** \bullet and DRAM data movement on HSW and KNL

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

Use by NESAP

- NESAP is the NERSC KNL application readiness project.
- NESAP used Roofline to drive optimization and analysis on KNL
 - Bound performance expectations (ERT)
 - Quantify DDR and MCDRAM data movement
 - Compare KNL data movement to Haswell (sea of private/coherent L2's vs. unified L3) \bullet
 - Understand importance of vectorization ullet
 - Doerfer et al., "Applying the Roofline Performance Model to the Intel Xeon Phi Knights Landing Processor", Intel Xeon Phi User Group Workshop (IXPUG), June 2016.
 - Barnes et al. "Evaluating and Optimizing the NERSC Workload on Knights \bullet Landing", Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), November 2016.

Roofline for NESAP Codes

Need a integrated solution...

- Having to compose VTune, SDE, and graphing tools worked correctly and benefitted NESAP, but ...
- Implaced a very high burden on users...
 - forced to learn/run multiple tools •
 - forced to instrument each routine in their application •
 - forced to manually parse/compose/graph the output
- ...still lacked integration with compiler/debugger/disassembly

CRD/NERSC wanted a more integrated solution...

LAWRENCE BERKELEY NATIONAL LABORATORY

Break / Questions

BERKELEY NATIONAL LABORATORY

Roofline vs. "Cache-Aware" Roofline

There are two Major Roofline Formulations:

- Original / DRAM / Hierarchical Roofline...
 - Williams, et al, "Roofline: An Insightful Visual Performance Model for Multicore Architectures", CACM, 2009 •
 - Defines multiple bandwidth ceilings and multiple Al's per kernel ٠
 - Performance bound is the minimum of the intercepts and flops •

"Cache-Aware" Roofline

- Ilic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014 •
- Defines multiple bandwidth ceilings, but uses a single AI (flop:L1 bytes) ٠
- As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant AI •
- Why Does this matter?
 - Some tools use the original Roofline, some use cache-aware == Users need to understand the differences •
 - Intel Advisor uses the Cache-Aware Roofline Model (alpha/experimental DRAM Roofline being evaluated) •
 - CRD/NERSC prefer the hierarchical Roofline as it provides greater insights into the behavior of the memory hierarchy •

Roofline

- Captures cache effects
- Al is Flop:Bytes after being filtered by lower cache levels
- Multiple Arithmetic Intensities (one per level of memory)
- Al dependent on problem size (capacity misses reduce AI)
- Memory/Cache/Locality effects are directly observed
- Requires *performance counters* to measure Al

"Cache-Aware" Roofline

- Captures cache effects
- Al is Flop:Bytes as presented to the L1 cache
- Single Arithmetic Intensity
- Al *independent* of problem size
- Memory/Cache/Locality effects are indirectly observed
- Requires static analysis or *binary* instrumentation to measure Al

Example: STREAM

• L1 Al...

- 2 flops
- 2 x 8B load (old)
- 1 x 8B store (new)
- = 0.08 flops per byte

No cache reuse…

• Iteration i doesn't touch any data associated with iteration i+delta for any delta.

... leads to a DRAM AI equal to the L1 AI

#pragma omp parallel for
for(i=0;i<N;i++){
 Z[i] = X[i] + alpha*Y[i];
}</pre>

Example: STREAM

Example: 7-point Stencil (Small Problem)

L1 AI...

- 7 flops
- 7 x 8B load (old) ٠
- 1 x 8B store (new) •
- = 0.11 flops per byte ٠
- some compilers may do register shuffles to reduce the • number of loads.

Moderate cache reuse...

- old[ijk] is reused on subsequent iterations of i,j,k ٠
- old[ijk-1] is reused on subsequent iterations of i. ٠
- old[ijk-jStride] is reused on subsequent iterations of j.
- old[ijk-kStride] is reused on subsequent iterations of k. •

```
... leads to DRAM AI larger than
the L1 AI
```

```
#pragma omp parallel for
for(k=1;k<dim+1;k++){</pre>
for(j=1;j<dim+1;j++){</pre>
for(i=1;i<dim+1;i++){</pre>
  int ijk = i + j*jStride + k*kStride;
  new[ijk] = -6.0*old[ijk
                 + old[ijk-1
                 + old[ijk+1
                 + old[ijk-jStride]
                 + old[ijk+jStride]
                 + old[ijk-kStride]
                 + old[ijk+kStride];
}}}
```


Example: 7-point Stencil (Small Problem)

Single AI based on flop:L1 bytes

Example: 7-point Stencil (Large Problem)

Single AI based on flop:L1 bytes

LAWRENCE BERKELEY NATIONAL LABORATORY

Break / Questions

nte Acvisor Introduction and General Usage

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be included in mainline product releases. They may not be stable as they are prototypes incorporating very new functionality. Intel provides preview features in order to collect user feedback and plans further development and productization steps based on the feedback.

Intel Advisor

- Integrated Performance Analysis Tool
 - Performance information including timings, flops, and trip counts
 - Vectorization Tips
 - Memory footprint analysis
 - Uses the Cache-Aware Roofline Model
 - All connected back to source code

CRD/NERSC began a collaboration with Intel

- Ensure Advisor runs on Cori in user-mode
- Push for Hierarchical Roofline
- Make it functional/scalable to many MPI processes across multiple nodes
- Validate results on NESAP, SciDAC, and ECP codes

NESAP is NERSC's KNL application readiness project SciDAC is the DOE Office of Science's Scientific Discovery thru Advanced Computing program ECP is the DOE's Exascale Computing Project

Intel Advisor (Useful Links)

Background

- https://software.intel.com/en-us/intel-advisor-xe
- https://software.intel.com/en-us/articles/getting-started-withintel-advisor-roofline-feature
- https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems

http://www.nersc.gov/users/software/performance-anddebugging-tools/advisor/

•••	< > 🗆	☆ ₹ ⊙		software.intel.com	¢)		۵
	Vectorization	and Threading a	ire Cruci	al to Performan	ce	verview	
	On modern processors	, it is becoming crucial to be	th vectorize (use AVX* or SIMD* instruct	tions)	etails	>
	and thread software to	realize the full performance	potential of the	e processor. In some case	es, code		
	about 7X faster than co	de that is only threaded or	vectorized. Ar	d that gap is growing with	every	ry & Buy	
	new processor general	ion.			F	AQ	*
	200.000 Br	The Difference is Grou	uing With	1	a (213) (m)		
	er Sec tter)	Each New Generation o	f Hardware				- AL
	ions P			187		4	
	al Opt		/	107	NE	50	Powering
	96.000 C	1	/				- Over ing
					HOME ABOUT SCI	INCE AT NERSC	SYSTEMS FOR USER
	Intel® Xeon® 2007	2009 2010 2012	2013	2014 2016	ENRIESERS		Home - For Users - Softw
	codenamed Harpertown	X5570 X5660 E5-260 Nehalem Westmere Sandy Bri	age ivy Bridge	Haswell Broadwa	Ten backs		
	Software and workloads used Performance tests, such as \$1 operations and functions. Am	I in performance tests may have been /Smark and MobileMark, are measure / change to any of those factors may	optimized for per d using specific co cause the results to	formance only on Intel m mputer systems, compor a vary. You should consu	User Announcementa		ADVISUR
	and performance tests to assi when combined with other pr	st you in fully evaluating your content oducts. For more information go to h	plated purchases, ttp://www.intel.com	including the performan n/performance.	My NERSC	1	
	Threaded plus vectoriz	ed can be much faster than	either one al	one. The gap is gro	Connecting to NERS4	•	Introduction
	new hardware generat	ion. Details.			Accounts & Allocation		Intel Advisor provides applications can make t
	in Depend towe 37.2%	inter Charling C	3.5	(m) B Smarth	Storage & File System	-	
	PETER All Modules . All Sour Plannary & Survey Report	cm + Loops + All Threads +		0/10-	Application Performa Data & Applytics	nce	 Vectorization Adv specifies what is b
	Function Call Sites and Loope	Vector Inves Self Tene+	VEN FLOPS	III Why No Vector At Vectorization? Vector	Job Logs & Statistics		data reorganization
	C Program 52107 at lange (0.1.1.172)	H 22146, 2015 2015 1	ContractoredBL1877 caller 0.1364	0.0025 B vectoriat	Training & Tutorials Software		Threading Advisor
	 Discop in S343 at longer80.7.2300 Discop in s141 SampTparallel for	2 2 Ann. 1275 23	calar 0.0811	G vector de	User Environment	- 1	design, tune, and code development.
	H C Deep in S252 at leeper86.62381] H C Deep in s232, SompSparallel, for	2 1 Pessi 6716	lectorized (0.1230 AVX2 0.2220 B 1 vector d -	Using Shifter and Dock All Software List	wr	
	Intel® Advisor gives yo	u data to forecast the perfo	mance gain t	efore you invest s	Applications		For more information or
	in implementation. Imp	lement only the options that	have a high r	eturn on investmer	Compilers Programming Models		
	Data-Driven Vect	orization Optimizati	on and Th	reading Desig	Version Control Tools		Using Intel Adv
					Programming Libraries Performance and Debu	asing	to launch Advisor, the l can be used. We recor
	You need good data to vectorized first? Is the	make good design decision performance gain worth the	effort? Will th	e threading perform	Tools		results using the GUI, "i
	larger core counts? Do	es this loop have a depende	ency that prev	ents vectorization?	Totalview		Compiling Code
	trip counts and memor I using older SIMD inst	y access patterns? Have I v ructions?	ectorized effic	iently with the later	GDB STAT and ATD		Additional Compile
					CCDB and lgdb		In order to compile the
	Vectorization Op	timization: Guidance	to Speed	up your Appli	Valgrind		Cray Compiler Wrappe When using the Cray of
Rate	Ustat			Look for us	CrayPat		it is recommended that
					MAP		Advisor, to complie a c
					Dershan		cc -g -dynamic -
					Advisor		
					Intel Trace Analyzer a	ind	Here, the -g option is no dynamically linked appl
					Collector Grid Software and Ser	/ces	statically by default).
					* Policies		Without the -dynamic o
					User Surveys NERSC Users Group		
					Help		% module load ad % cc -g -openmo
					- Staff Blogs	(allog	% srun -n 1 -c 8
					PERCENSION PROPOSITORY	11111119	advive: Error: 8

Using Intel Advisor at NERSC

Compile...

use '-g' when compiling

Submit Job...

% salloc -perf=vtune <<< interactive sessions; --perf only needed for DRAM Roofline

-or-

#SBATCH -perf=vtune

<<< batch submissions; --perf only needed for DRAM Roofline</pre>

Benchmark...

% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex

% srun [args] advixe-cl -collect survey -no-stack-stitching -project-dir \$DIR -- ./a.out [args]

% srun [args] advixe-cl -collect tripcounts -flops-and-masks -callstack-flops -project-dir \$DIR -- ./a.out [args]

Use Advisor GUI...

% module load advisor

% export ADVIXE_EXPERIMENTAL=roofline_ex

% advixe-qui \$DIR

<<< only needed for DRAM Roofline</pre>

NoMachine - NERSC	0		
🞽 💽 /global/cscratch1/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Inte	el Advisor <@cori()5> <2>	
File View Help			
Welcome e000 (read-only) 🗶			
📾 Elapsed time: 50.50s 🤻 🛛 Vectorized 🖉 Not Vectorized 🍜			
FILTER: All Modules All Sources			
Cummany & Survey & Deefling & Definement Departs			
T Summary & Survey & Roomne & Reimement Reports			14
Program metrics			
Elapsed Time 50.50s			
Vector Instruction Set AVX Number of CPU	Threads 16		
Total GFLOP Count 753.95 Total GFLOPS	14.93		
Total Arithmetic Intensity [©] 0.12			
Loop metrics Tatal CDU times 100.0%			
Iotal CPU time 806.225 100.0% Time in F vestorized loops 641.62s 70.6%			
Time in scalar code 164.60c 20.4%			
Time in scalar code 164.60s 20.4%			
Vectorization Gain/Efficiency			
Vectorized Loops Gain/Efficiency [®] 3.81x 95%	0		
Program Approximate Gain [©] 3.23x			
Top time-consuming loops [®]			
Loop	Self Time [®]	Total Time®	Trip
Iloop in bench stencil ver2\$omp\$parallel for@102 at stencil v2.c:108]	160.035s	160.035s	31;
Iloop in <u>bench_stencil_ver3\$omp\$parallel_for@146</u> at <u>stencil_v2.c:152</u>	159.953s	159.953s	32;
Iloop in <u>bench_stencil_ver4\$omp\$parallel_for@193</u> at <u>stencil_v2.c:201</u>	159.595s	159.595s	130
I loop in <u>bench_stencil_ver1\$omp\$parallel_for@62</u> at <u>stencil_v2.c:65</u>	159.307s	159.307s	31;
🚜 📑 🖾 Advixe-gui 3 🗟 emacs-gtk@cori05-bond	10.224	🖩 cori :	

NoMachine - NERSC	or <@cori05> <2>		\odot
File View Help			
Welcome e000 (read-only) 🗶			,
📾 Elapsed time: 50.50s 😽 🙋 Vectorized 🖉 Not Vectorized 🦉		OFF Smart Mo	ode ^e 🔍
FILTER: All Modules - All Sources - Loops And Functions - All Threads -			INTEL ADVISOR 2017
P Summary Survey & Roofline 🔅 Refinement Reports			
T Function Call Sites and	_	FLOPS	
loops lotal In	ne lype	GFLOPS -	AI
🚊 ◙©[loop in bench_stencil_ver4\$ 📃 👘 159.595s⊡ 159.595	5s 🗔 Vectorized (Body	/) 23.083	0.117
着 🖽 [loop in bench_stencil_ver3\$ 🔲 🔋 1 Ineffective peeled/ 159.953s 🗖 159.953	Ss Vectorized (Body	/; Re 16.274	0.117
🗉 🗄 [loop in bench_stencil_ver2\$ 📃 💡 1 Ineffective peeled/ 160.035s 🗖 160.035	s Vectorized (Body	/; Peel 15.662	0.117
🗉 🗄 [loop in bench_stencil_ver1\$ 📃 💡 1 Ineffective peeled/ 159.307s 🗖 159.307	/s 🗖 Vectorized (Body	/; Peel 10.218	0.117
Image: Second State	4s Ⅲ Scalar	9.009	0.117
Source Top Down Code Analytics Assembly 🖓 Recommendations 🖻 Why No Vector	orization?		
File: stencil_v2.c:108 bench_stencil_ver2\$omp\$parallel_for@102			
Lin. Source	Total Time %	Loop/Function Time	% Traits
103 - TOT(LILE=0; LILE <jiiles*kiiles; lile++){<="" td=""><td>0.01051</td><td></td><td></td></jiiles*kiiles;>	0.01051		
104 int kLo = $16*(tile/jTiles);$			
105 int jLo = 16*(tile%jTiles);			
106 tor(k=kLo;k <klo+16;k++){< td=""><td>0.008s</td><td></td><td></td></klo+16;k++){<>	0.008s		
10/ tor(j=jL0;j <jl0+16;j++){< td=""><td>0.092s</td><td>160.025-</td><td></td></jl0+16;j++){<>	0.092s	160.025-	
$\frac{100}{100} = \frac{101(1=0)(1<01m)(1+1)}{100}$	1.5005	100.0328	
$110 \qquad pew[iik] = -6.0*old[iik = 1]$	26.216el		FMA
	1 500		
Selected (lotal lime):	1.500s		
👔 🛄 🔤 Malvive qui	COPI		
Advixe-gui 3 Semacs-gtk@cori05-bond0.224	E CORI :		

		NoM	lachine - NERSC			
	/global/cscratch1/sd/tkoskela/dra	m_roofline/stencil/advi.stencil.au	g2.16 - Intel	Advisor <@cori0	5> <2>	
File	View Help					
We	lcome e000 (read-only) 🗶					
	Elapsed time: 50.50s 🏼 🤻 🖉 Ve	ectorized 🧕 Not Vectorized 🍯				OFF S
FIL	TER: All Modules - All Sources	✓ Loops And Functions ✓ All	Threads 👻			
Ŷ	Summary 🛠 Survey & Roofline	② Refinement Reports				
ROO		Vector Issues Se	elf Time Tot	tal Time Type		FLOPS GFLOP
Ē	^I oop in bench_stencil_ver4	15	59.595s = 15	9.595s Vecto	rized (Body)	23.083
ZE	⊕©[loop in bench_stencil_ver3	🔲 🔋 1 Ineffective peeled/ 15	59.953s = 15	9.953s 🗖 Vecto	rized (Body;	Re 16.274
	⊞©[loop in bench_stencil_ver2	🔲 💡 1 Ineffective peeled/ 16	60.035s = 16	0.035s Vecto	rized (Body;	Peel 15.662
	∎ [©] [loop in bench_stencil_ver1	🔲 💡 1 Ineffective peeled/ 15	59.307s = 15	9.307s Vecto	rized (Body;	Peel 10.218
	়ত [loop in bench_stencil_v	🔲 🔋 1 Potential under 1!	57.994s 🛛 15	7.994s 🗆 Scala	r	9.00
					7	
S	ource Top Down Code Analytics	s Assembly 🛛 Recommendation	ns 📮 Why No	o Vectorization?		
Fu	nction Call Sites and Loops		Total Time %	o Total Time	Self Time	Туре
	⊟_INTERNAL_26src_z_Li	inux_util_cpp_2d702c13::[OpenM	93.8%	755.843s	0.000sl	Function
	⊟© [loop in _INTERNAL_26	SIC_ZINTERNAL 26	src z Linux u	til cpp 2d702c1	3:: OpenMP	worker]
	□kmp_launch_thread		93.8%	/35.8435	0.00051	Function
	⊟ő[loop inkmp_launch_	_thread at kmp_runtime.cpp:565	93.8%	755.843s	0.000sl	Scalar
	⊟[OpenMP dispatcher]		93.3%	752.000s	0.000sl	Function
	⊞bench_stencil_ver2\$c	omp\$parallel_for@102	18.7%	150.903s	0.120s	Function
	⊞bench_stencil_ver3\$c	omp\$parallel_for@146	18.7%	150.471s	0.000sl	Function
	⊞bench_stencil_ver4\$c	omp\$parallel_for@193	18.6%	149.989s	0.000sl	Function
	Thouch stoned vor1¢e	ampenarallal for@62	19 60/	140 7426	0.000-1	Eunction
2	📕 🔛 Advixe-gui	₃ 🕏 emacs-gtk@d	cori05-bond0	.224	🖩 cori :	

		-
	\odot	\otimes
		•
omart Mode	° q EL ADVISOR 201	7
	-	n
°S ▼	AI	
3	0.117	
4	0.117	
2	0.117	
8	0.117	
9 📃	0.117	
	FLOPS	
	GFLOPS	
	0.998	
	0.998	
	0.998	
	0.998	
	1.003	
	1.083	
	1.097	
	1.540	
	0.606	

Ad	0	(alobal/cscratch1/sd/tkoskela/dra	m roofline/s	tencil/advi stencil	NoMachine - NER	SC tel Advisor <	@cori0	5> <2>	
F	ile	View Help	iiii_iooiiiiie/s	tench/auvi.stench	.aug2.10 - III		@cono.	57 <27	
Ī	Ne	elcome e000 (read-only) 🗶							
Í		Elapsed time: 50.50s 🏼 🤻 🧕 🗸	ectorized 🖉	Not Vectorized 🤷				OFF	S
	FIL	LTER: All Modules 👻 All Sources	- Loops A	nd Functions 👻	All Threads	-			
	4	Summary 🔮 Survey & Roofline	🍅 Refineme	ent Reports		_			
10	7	Function Call Sites and			o 1(T)		-		FLOPS
11	Ĩ 8	Loops	♦ ¥Vect	or Issues	Self Lime	lotal lime	Туре		GFLOP
11					159.595s	159.595s	Vector	rized (Body)	23.083
Ш	Ē	⊡©[loop in bench_stencil_ver3	🔲 🔋 1 In	effective peeled/	159.953s	159.953s	Vector	rized (Body; Re	16.274
11			🔲 💡1 In	effective peeled/	160.035s	160.035s	Vector	rized (Body; Peel	15.662
11		∃ ^o [loop in bench_stencil_ver1	🗌 💡 1 In	effective peeled/	159.307s	159.307s	Vector	rized (Body; Peel	. 10.218
11		≌ত[loop in bench_stencil_v	🗌 🔋 1 Po	otential under	157.994s	157.994s	Scala	r	9.00
	_							1	
1	So	ource Top Down Code Analytic	s Assembly	🖉 💡 Recommenda	tions 📮 Why	y No Vectoriza	ation?		
		Loop in					\bigcirc		000-
U.	ŀ	bench_stencil_ver0\$omp\$para	allel for	Average II	np Coun	IS: 512	\bigcirc	GFLOPS: 9	.0087
Ш	~	at stencil v2.c:29							
Ш				Instruction	Mix®		\odot	Code Optim	izatio
Ш			004-	Memory: 5	Compute: 9) Mixed [®] :		Compiler: Intel(B) C In
Ш.		\smile 157.	994S	4 Other: 4	Number o	of Vector		Compiler for an	nlicatio
l		Scalar Total tim	ne	Registers: 9				Intel(R) 64,	plicatio
		157 00	240					Version: 17.0.2.	.174 Bi
		157.98	745						
		Self time	6		-	10.00 1			
ġ.	F	🔤 🔛 Advixe-gui		3 Semacs-gtk	@cori05-bor	nd0.224		🖽 cori :	

	•	•			NoMachine - NE	RSC				
Ad	\odot	/global/cscratch1/sd/tkoskela/dra	m_roc	ofline/stencil/advi.stenc	:il.aug2.16 - I	ntel Advisor <	@cori0	5> <2>		
F	ile	View Help								
1	Nel	come e000 (read-only) 🗶								
		Elapsed time: 50.50s 😽 🙋 Ve	ectoriz	ed 🖉 Not Vectorized 🖪	5				OFF	S
	FILT	ER: All Modules 🖌 All Sources	- L	oops And Functions 👻	All Threads	-				
3	e s	ummary 📽 Survey & Roofline	🍅 Ref	finement Reports						
D		Eunction Call Sites and								FLOPS
Ш	õ	E Loops	٥		Self Time	Total Time	Туре		-	GFLOP
ш	Ž	Solution Stenci Ste			159.595s	159.595s	Vector	ized (Body)		23.083
11		±©[loop in bench stencil ver3		♀1 Ineffective peeled/	159.953s	159.953s	Vector	ized (Body; F	₹е	16.274
11	6	∃ [©] [loop in bench stencil ver2		♀1 Ineffective peeled/	160.035s	160.035s	Vector	ized (Body; F	eel	15.662
11	6	∃ [©] [loop in bench stencil ver1		♀1 Ineffective peeled/	159.307s	159.307s	Vector	ized (Body; F	eel	10.218
11		ਾੁੁੱਹ [loop in bench_stencil_v		🛙 1 Potential under .	157.994s	157.994s	Scala	r		9.00
	5		-				1		1	
	Sou	urce Top Down Code Analytics	s Ass	sembly 💡 Recommend	lations 📮 W	hy No Vectoriza	ation?			
	Мо	dule: a.out!0x401690								
lľ		Address Lin.		Assembly	(Total Time	%	Self
	bod	y 0x401690 Block 1:								
		0x401690 34 vmovsdq (%	rbp,%	rdx,8), %xmml				0.996s	.[
		0x401696 31 leal (%r13	,%r12	.,1), %r11d				1.728s	[1
		0x40169b 31 movsxd %r11	d, %r	11				1.008s	[
		0x40169e 29 inc %r10d						1.794s	l.	
		0x4016a1 36 vmovsdq (%	rbp,%	ordi,8), %xmm2				0.944s	[
		0x4016a7 29 add %r8, %r	dx					49.773s	1	4
		0x4016aa 29 add %r8, %r	di			1 1 1/7 1 1-	-' \	1.456s	(
					S	elected (lotal	(ime):	0s		
				· Bomaca a	the corios by	and0 224	Y	E cori .		
Ø	*	Auvixe-gui	_	3 gemacs-g	LK(@CONUS-DC	01100.224		ECON :		

		Q	\odot	×
				•
imart M	lode	•	(2
	INTE	L ADV	ISOR 20	J 17
				n
°S∓		AI		
3		0.11	7	
4		0.11	.7	
2		0.11	7	
8		0.11	.7	
9		0.1	17	_
Time	0/2	1.	Traits	
Time	70		maits	
0.996s	[
1.728s	[l		
1.008s	[
1.794s	I.			
0.944s	1			
9.773s				
1.4565				_
	_			
	-	_	- Aller - Alle	8

LAWRENCE BERKELEY NATIONAL LABORATORY

Break / Questions

Intel Advisor: Stencil Roofline Demo*

*DRAM Roofline and OS/X Advisor GUI: These are preview features that may or may not be included in mainline product releases. They may not be stable as they are prototypes incorporating very new functionality. Intel provides preview features in order to collect user feedback and plans further development and productization steps based on the feedback.

7-point, Constant-Coefficient Stencil

- Apply to a 512³ domain on a single NUMA node (single HSW socket)
- Create 5 code variants to highlight effects (as seen in advisor)

ver0.	Baseline: thread over outer loop (k), but prevent vector	prization
	#pragma novector	// prevent simd
	<pre>int ijk = i*iStride + j*jStride + k*kStride;</pre>	<pre>// variable iStride to confuse</pre>
ver1.	Enable vectorization	
	int ijk = i + j*jStride + k*kStride;	<pre>// unit-stride inner loop</pre>
ver2.	Eliminate capacity misses	
	2D tiling of j-k iteration space	// working set had been O(6MB) per
ver3.	Improve vectorization	
	Provide aligned pointers and strides	
ver4.	Force vectorization / cache bypass	
	<pre>assume(jstride%8 == 0);</pre>	<pre>// stride by variable is still</pre>
	<pre>#pragma omp simd, vector nontemportal</pre>	<pre>// force simd; force cache byp</pre>

e the compiler

r thread

aligned pass

● ● ● NoMachine - NERSC			
/global/cscratch1/sd/tkoskela/dram_roofline/stencil/advi.stencil.aug2.16 - Intel Advise	or <@cori05> <2>		$\odot \odot \otimes$
File View Help			
Welcome e000 (read-only) 🗶			•
📾 Elapsed time: 50.50s 😽 🧔 Vectorized 🔍 Not Vectorized 🦉		OFF Sma	art Mode ^e 🔍 🔍
FILTER: All Modules - All Sources - Loops And Functions - All Threads -			INTEL ADVISOR 2017
🗣 Summary 📽 Survey & Roofline 🔌 Refinement Reports			
□ □ □ □ □ FLOPS □ □ □ □ □ □ □		Vectorized Loop	os
B I Tunction can sites and loops 6 I Sen Tine Ti. 1. GFLOPS -	AI	Vector I Effic	ciency Gain Es V
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0.117	AVX2 10	0% 5.27x 4
☐ 🗄 🖽 🖸 [loop in bench_stencil_ver3\$o 🔲 🔋 1 159.953s 💶 15.V. 16.274 💶 🔤	0.117	AVX2	9 <mark>%</mark> 3.55x 4
Boop in bench_stencil_ver2\$o	0.117	AVX2 80	<mark>)% 3.21x 4</mark>
	0.117	AVX2	<mark>)%</mark> 3.21x 4
💵 🖲 [loop in bench_stencil_ver0 📄 🔋 1 157.994s 🗔 1 .S. 9.009 💳	0.117		
Source Top Down Code Analytics Assembly 🖗 Recommendations 🖬 Why No Vect	orization?		
File: stencil_v2.c:29 bench_stencil_ver0\$omp\$parallel_for@25			
Lin. Source	Total Time %	Loop/Function Ti	me % Traits
25 #pragma omp parallel for	9.890s		
26 [⊞] for(k=1;k <dim+1;k++){< td=""><td></td><td></td><td>•</td></dim+1;k++){<>			•
27	-		
28 #pragma novector	100 402-	157.0	0.4-
$29 = \text{Tor}(1=1; 1 < \text{dim}+1; 1++) \{$	102.4035	157.9	94s
$30 \qquad \text{Int IJK} = 1^{+} \text{IStride} + \text{J}^{+} \text{JStride} + \text{K}^{+} \text{KStride};$	53.651c		EMA
+ old[iik-iStride]	33.0313		
Selected (Total Time):	102.403s		
🛃 🔚 🔚 Advixe-gui 👔 🕏 emacs-gtk@cori05-bond0.224	🛛 🗐 cori :		

••	•				NoMachi	ne - NERSC			
File	/global/cs View He	cratch1/ elp	/sd/tk	C	RAM Ro	ofline*			
Wel	come e0	00 🗙			in an				
	Elapsed	time: 50).40s 🎽 🙋 Vect	orized 🧕 N	ot Vectorized 🦉 MKL]			OFF Sma
FILT	ER: All M	Iodules	✓ All Sources ·	- Loops An	d Functions 👻 All Thr	eads 👻			
E S	Summary	🍫 Surv	vey & Roofline	Refinemen	t Reports				
SUB	Perform	ance (G	FLOPS)	▶ Q [@]	♦	Use Single-Thr	eaded Roof	s 0 🗹	Show Hierarchic DP Vector FMA Peak
WEY	1688.18	L1 Band	width: 1.1e+4 GB/ width: 3542.01 GE	sec Vsec		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DP Vector Add Pea
		L3 Band	Width: 1003.46.65	GB/sec				111	
	0.66	DRAME	Sandwidding		[loop in bench Total Performan	_stencil_ver0\$o nce: 5.45 GFLOP	mp\$parallel S 7 EL OP/Byte	_for@25	5 at stencil_v2.c:26
			0.05	T . 1 C	Self Elapsed Ti	me: 0.000 s ime: 10 000 s	I I LOF/Dyle	7	
		elf Elaps	ed Time: 0.000 s	Total Elap	sed Tim Total Elapsed T				
So	urce lop	Down	Code Analytics	Assembly	Recommendations	Why No Vecto	orization?		
File	e: stencil _.	_v2.c:2	6 bench_stencil	_ver0\$omp	\$parallel_for@25		Tatal Times	0/	Leen/Eunstien Tim
24	≞ white	e(Elaps	edTime < TIME)	Source {			Total Time	%0	Loop/Function Tir
25	#p	ragma o	mp parallel fo	r					
26		r(k= 1; k	<dim+1;k++){< td=""><td></td><td></td><td></td><td></td><td></td><td>159417.000</td></dim+1;k++){<>						159417.000
27	⊞ fo	r(j=1;j	<dim+1;j++){< td=""><td></td><td>Selecto</td><td>ed (Total Time):</td><td>0m</td><td>s</td><td></td></dim+1;j++){<>		Selecto	ed (Total Time):	0m	s	
8.	A 🔛	dvixe-gu	li		₃ 🕏 emacs-gtk@cori	05-bond0.224		l cori :	

	•				NoMachi	ne - NERSC			
₩ ⊙ File	/ global/cs View He	elp	/sd/tk	C	RAM Ro	ofline*			
Wel	lcome e0	00 x							
Ó	Elapsed	time: 50).40s 🄀 🙋 Vect	torized 🖉 N	ot Vectorized 🖉 MKL	_			OFF Sma
FILT	TER: All M	Iodules	→ All Sources →	- Loops An	d Functions 👻 All Thi	eads 👻			
E S	Summary	∕ ⊗ Surv	vey & Roofline	Refinemen	t Reports				
SUR	Perform	ance (G	FLOPS)	▶ Q ₼	♦	Use Single-Thr	eaded Roof	s 0 🗉	Show Hierarchic
WEY	1688.18	L1 Band	width: 1.1e+4 GB/ width: 3542.01 GE	sec //sec //sec		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DP Vector Add Pea
		L3 Band	width: 1003:40-0	GB/sec		©	122228 - 0*2222		
	10000 - 00100000	DRAME	an los 11, 2000 - 2000		[loop in bench Total Performar	_stencil_ver1\$o nce: 10.18 GFLO	mp\$parallel PS	_for@62	2 at stencil_v2.c:63
	0.00	_			Total L1 Arithm	etic Intensity: 0.1	7 FLOP/Byte		
	0.66								
	0.66		0.05		Self Elapsed Ti	me: 0.000 s			
	0.66 S	elf Elaps	0.05 ed Time: 0.000 s	Total Elaps	Self Elapsed Tii sed Tim ^{Total Elapsed T}	me: 0.000 s ïme: 9.972 s			
So	Source Top	elf Elaps	0.05 ed Time: 0.000 s Code Analytics	Total Elaps Assembly	Self Elapsed Tin sed Tim ^{Total} Elapsed T @ Recommendations	me: 0.000 s ïme: 9.972 s • Why No Vecto	orization?		
So	0.66 Source Top	elf Elaps Down _v2.c:6	0.05 ed Time: 0.000 s Code Analytics 3 bench_stencil	Total Elaps Assembly _ver1\$omp	Self Elapsed Tin sed Tim Recommendations	me: 0.000 s Time: 9.972 s Why No Vecto	orization?		
So File Lin	0.66 Source Top e: stencil	elf Elaps Down _v2.c:6	0.05 ed Time: 0.000 s Code Analytics 3 bench_stencil	Total Elaps Assembly _ver1\$omp Source	Self Elapsed Tin sed Tim Recommendations \$parallel_for@62	me: 0.000 s ime: 9.972 s u Why No Vecto	orization? Total Time	%	Loop/Function Tir
So File Lin 61 62	0.66 Source Top e: stencil	elf Elaps Down _v2.c:6 e (Elaps ragma o	0.05 ed Time: 0.000 s Code Analytics 3 bench_stencil edTime < TIME) mp parallel fo	Total Elaps Assembly _ver1\$omp Source {	Self Elapsed Tin sed Tim Recommendations \$parallel_for@62	me: 0.000 s ime: 9.972 s u Why No Vecto	orization? Total Time	%	Loop/Function Tir
So File Lin 61 62 63	U.66 Source Top e: stencil 	elf Elaps Down _v2.c:6 e (Elaps ragma o r (k=1; k	0.05 ed Time: 0.000 s Code Analytics 3 bench_stencil edTime < TIME) mp parallel fo <dim+1;k++){< td=""><td>Total Elaps Assembly _ver1\$omp Source {</td><td>Self Elapsed Tin sed Tim Recommendations</td><td>me: 0.000 s ime: 9.972 s Why No Vecto</td><td>orization? Total Time</td><td>° %</td><td>Loop/Function Tir</td></dim+1;k++){<>	Total Elaps Assembly _ver1\$omp Source {	Self Elapsed Tin sed Tim Recommendations	me: 0.000 s ime: 9.972 s Why No Vecto	orization? Total Time	° %	Loop/Function Tir
So File Lin 61 62 63 64	0.66 Source Top e: stencil " while #p fo fo	elf Elaps Down _v2.c:6 e (Elaps ragma o r(k=1;k r(j=1;j	0.05 ed Time: 0.000 s Code Analytics 3 bench_stencil edTime < TIME)- mp parallel fo <dim+1;k++){ <dim+1;j++){< td=""><td>Total Elaps Assembly _ver1\$omp Source {</td><td>Self Elapsed Tin Total Elapsed T Recommendations \$parallel_for@62</td><td>me: 0.000 s ime: 9.972 s Why No Vecto ed (Total Time):</td><td>orization? Total Time 0m</td><td>s</td><td>Loop/Function Tir</td></dim+1;j++){<></dim+1;k++){ 	Total Elaps Assembly _ver1\$omp Source {	Self Elapsed Tin Total Elapsed T Recommendations \$parallel_for@62	me: 0.000 s ime: 9.972 s Why No Vecto ed (Total Time):	orization? Total Time 0m	s	Loop/Function Tir

•	•				NoMachi	ne - NERSC				
File	/ global/cs View He	elp	/sd/tk	C	RAM Ro	ofline*				
We	elcome e0	00 🗙								
0	Elapsed	time: 50).40s 🏼 🤻 👩 Veci	orized 🧔 N	ot Vectorized 🙆 MKL				OFF Sma	
FIL	TER: All N	Iodules	✓ All Sources ·	Loops An	d Functions 👻 All Thi	reads 👻				
	Summary	🍫 Surv	vey & Roofline	Refinemen	t Reports					
SUR	Perform	ance (G	FLOPS)	▶ Q 🖑	 ★ → × □ - □ 	Use Single-Thr	eaded Roof	s 0 6	Show Hierarchica	
VEY	1000.10	L1 Band	width: 1.1e+4 GB/ width: 3542.01 GE	√sec //sec				 	DP Vector Add Pea	
		L3 Band	width: 1003-40-02	GB/sec?		©				
	0.66	DRAME			Tot	o p in bench_ste r al Performance: ⁻ al L1 Arithmetic I	ncil_ver2\$or 15.28 GFLOF ntensity: 0.28	n p\$par PS FLOP/	allel_for@102 at ste Byte	
	s s	elf Elaps	0.05 ed Time: 0.008 s	Total Elaps	Sel sed Time: 9.964 s	f Elapsed Time: (al Elapsed Time:	0.008 s 9.964 s			
So	ource Top) Down	Code Analytics	Assembly	Recommendations	G Why No Vecto	orization?			
Fil	le: stencil	_v2.c:1	03 bench_stenc	il_ver2\$om	p\$parallel_for@102					
Lir	۱.			Source			Total Time	%	Loop/Function Tir	
10 10	L ^m while(ElapsedTime < TIME){ 2 #pragma omp parallel for schedule(static,1)							16.002 ms		
10	3 [⊞] fo	r(tile=	0;tile <jtiles*< td=""><td>Tiles;tile</td><td>e++){</td><td></td><td></td><td></td><td>159651.000</td></jtiles*<>	Tiles;tile	e++){				159651.000	
10	4	int kLo	= 16*(tile/jT	iles);	Select	ed (Total Time):	0ms	6		
	A	dvixe-gu	ıi		₃ 🕏 emacs-gtk@cori	05-bond0.224		cori :		

				NoMachi	ne - NERSC							
₩ ○ /global File View	l/cscratch1/ Help	sd/tk	C	RAM Ro	ofline*					\odot \otimes \otimes		
Welcome e000 x										•		
FILTER: A	ed time: 50 II Modules	.40s 🗱 🗿 Vec	torized 🧔 N - Loops An	ot Vectorized 🖉 🛛 MKL d Functions 👻 All Thi	reads 👻			OFF Smart	Mode [®] INTEL AI	Q IVISOR 2018		
🗏 Summary 🗞 Survey & Roofline 📲 Refinement Reports												
ဖု Performance (GFLOPS)												
1688.	18- 1 1 Band	width: 1.1e+4 GB	sec	- 🛛			31111179-	DP Vector FMA Peak:	1688.18	GFLOPS		
→	L2 Band	width: 3542.01-GE	3542.01 GB/sec				-DP Vector Add Peak: 422.07 GFI (
	L3 Band	width: 1003-46-Gt	2 <u>222</u> ⊡				5	Scalar Add Peak	115,16	GFLOPS?		
		andwidth: 128.58	GB/sec		0					d Harper In Ma		
0.	0.66 0.66 0.05 0.05 Self Elapsed Time: 0.000 s Total Elapsed Time: 9.926 s [loop in bench_stencil_ver3\$omp\$parallel_for@146 at stencil_ Total Performance: 15.67 GFLOPS Self Elapsed Time: 0.000 s Total Elapsed Time: 9.926 s									146]		
Source	Top Down	Code Analytics	Assembly	Recommendations	🛾 Why No Vecto	orization?						
File: sten	cil_v2.c:14	16 bench_stend	il_ver3\$om	p\$parallel_for@146								
Lin.	Source						%	Loop/Function Time	e %	Traits		
144 St 145 ⊞ wh	artlime = nile(Elaps	omp_get_wtime edTime < TIMF)	(); {									
146 [⊞]	146 ^Ⅲ #pragma omp parallel for schedule(static,1)							159807.000n	is 📃			
147 ⊞	<pre>for(tile=</pre>	9;tile <jtiles*< th=""><th>kTiles;tile</th><th>e++){</th><th>ad (Tatal Time)</th><th>42.000</th><th></th><th></th><th></th><th></th></jtiles*<>	kTiles;tile	e++){	ad (Tatal Time)	42.000						
-				Select	ed (Total Time):	43.998ms						
🧸 – 🗖 🖉	Advixe-gu	i		3 😔 emacs-gtk@cori	05-bond0.224		cori :					

				NoMachi	ne - NERSC						
🦉 🕟 /global/	/cscratch1/	sd/tk	Г		ofline*				$\odot \odot $		
File view	негр		L								
Welcome	e000 🗶 📃								•		
D Elapse	ed time: 50	.40s 🤻 🙆 Vec	torized 🧕 N	ot Vectorized 🍯 MKL				OFF Smart Mo	ode ^e Q		
FILTER: A	l Modules	✓ All Sources	- Loops An	d Functions 👻 All Thi	reads 👻			I	TEL ADVISOR 2018		
Summary Survey & Roofline Reports											
ဖု Performance (GFLOPS) 🕨 🔦 🖑 🐟 🤌 🗙 🍺 👻 🗆 Use Single-Threaded Roofs 🥝 🛛 Show Hierarchical Data											
1688.1	18-	width: 1.1e+4 GB	sec					DP Vector FMA Peak: 168	8.18 GFLOPS		
≺	1 2 Band	width: 3542.01-GE	1: 3542.01 GB/sec					DP-Vector Add Peak: 422.07 GFLOPS			
	L3 Band	width: 1003-46-Gt	VSec - B- soss					Scalar Add Peak: 11	5.16 GFLOPS?		
2		undwidth: 128.58	GB/sec		•				d Shept Is had		
	DRAME			8 1	[loop in benc	h_stencil_ver4	1\$omp	\$parallel_for@193 at st	encil_v2.c:193]		
0.6	36				Total Performa	ance: 18.98 GF	LOPS				
0.0			Total L1 Arithmetic				etic Intensity: 0.41 FLOP/Byte				
		0.05	T		Total Flapsed	Time: 0.000 s					
	Self Elaps	ed 11me: 0.000 s	i otal Elap	sed 11me: 9.956 s			_				
Source T	op Down	Code Analytics	Assembly	Recommendations	Why No Vector	orization?					
File: sten	cil_v2.c:1	93 bench_stend	il_ver4\$om	p\$parallel_for@193							
Lin.		Source			Total Time	%	Loop/Function Time	% Traits			
191 Sta 192 ⊞ wh	artiime = ile(Flans	omp_get_wtime edTime < TIME)	(); {								
193 [⊕] #pragma omp parallel for schedule(static.1)						8.004ms		160161.000ms	_		
194	for(tile=	0;tile <jtiles*< td=""><td>kTiles;til</td><td>e++){</td><td></td><td></td><td></td><td></td><td></td></jtiles*<>	kTiles;til	e++){							
				Select	ed (Total Time):	8.004ms					
	Advivo d			A macs atk@cori	05 bond0 224		ori				
	Auvixe-gu	1		3 Semacs-ytk@con	05-00100.224	🖽 C	UT :				

LAWRENCE BERKELEY NATIONAL LABORATORY

Wrap up / Questions

Roofline/Advisor Tutorial at SC'17

- Sunday November 12th
- 8:30am-12pm (half-day tutorial)
- multi-/manycore focus

Intel Advisor (Useful Links)

Background

- https://software.intel.com/en-us/intel-advisor-xe
- https://software.intel.com/en-us/articles/getting-started-withintel-advisor-roofline-feature
- https://www.youtube.com/watch?v=h2QEM1HpFgg

Running Advisor on NERSC Systems

http://www.nersc.gov/users/software/performance-anddebugging-tools/advisor/

•••	<>	۵ :		software.intel.com	٥.	0
	Vectorization	and Threadi	ng are Cruc	ial to Performan	Ce Over	view
	On modern processor	s, it is becoming crucia	I to both vectorize	(use AVX* or SIMD* instruct	tions) Deta	ils >
	and thread software to that is vectorized and	o realize the full perform threaded can be up to	nance potential of 187X faster than u	the processor. In some case nthreaded/unvectorized cod	es, code	&Buv >
	about 7X faster than o	code that is only thread	ed or vectorized. A	nd that gap is growing with	every	
	new processor genera	spon.			FAQ	
	200.000 B	The Difference I	s Growing With	1		@ F
	88 88 Per Se etter)	Each New Genera	tion of Hardware			
	ptions er is B			187	NOD	20
	18 0 Initial (1997)				NER	Power
	Binor	-	/			
	=			¥:	HOME ABOUT SCIENCE	AT NERSC SYSTEMS FOR US
	Intel® Xeon® 2007 Processor: X5472	2009 2010 x5570 x5680	2012 2013 E5-2600 E5-2600 v2	2014 2016 E5-2600 v3 E5-2600	FOR USERS	Home - For Users - So
	codenamed Harpertown Software and workloads use	Nervalem Westmere Si id in performance tests may ha	andy Bridge Invy Bridge we been optimized for pe	Haswell Broadwe	= Live Status	ADVISOR
	Performance tests, such as 5 operations and functions. Ar and performance tests to as	VSmark and MobileMark, are r ty change to any of those facto sist you in fully evaluating you	measured using specific o ors may cause the results r contemplated purchase	omputer systems, complet to vary. You should consu s, including the performan	User Announcements My NERSC	ADVISON
	when combined with other p	products. For more information	go to http://www.intel.co	on/performance.	• Getting Started	Introduction
	new hardware genera	tion. Details.	r than either one a	one. The gap is gro	Connecting to NERSC Accounts & Allocations	Intel Advisor provid
	In Department 17 the			(m)	Computational Systems	applications can mail
	PETER All Modules + All Ser	wim + Loops + All Threads		11	Application Performance	Vectorization A
	Summary Government Servey Report Servey Report	Reforement Reports Vinctor Self Tengre	Type PLOPS	III Why Nas Verte	Data & Analytics Job Logs & Statistics	specifies what i data reorganizat
	Contract in Scholar Lange With 1177		Vectorized . 6.167 Scalar 0.1964	A Vectorpation Vector 0.5070 W Invectorial AVCC 0.5021 E vectorial	F Training & Tutorials	Threading Advi
	 ⇒ ○ [loop in \$126 at loops92.6.447] ⇒ ○ [loop in \$345 at loops90.6.2300] 	9 9 2 Prov 0.0075	Scalar 0.3071 Scalar	0.3667 El vector de El vector de	Software User Environment	design, tune, a
	+ O Deep in 5352 at longe/80.6.2(81) H O Deep in s252, SompSparafiel, for	2 1 Pessi . 0.71%	Vectorized (2.771 Scalar Versions 0.2001	0.1230 AVX2 0.2220 E 1 vector 4	Using Shifter and Docker	code developme
	Intel® Advisor gives y	ou data to forecast the	performance gain	before you invest s	Applications	For more information
	in implementation. Imp	plement only the option	ns that have a high	return on investmei	Compilers Programming Models	Uning Intel A
	Data-Driven Vec	torization Optim	ization and Th	reading Desig	Version Control Tools	Using Intel A
	You need oppil data to	n make nood design de	arisions What loor	e should be threads	Performance and Debuggin	can be used. We re
	vectorized first? Is the	performance gain wor	th the effort? Will t	he threading perform	DOT	results using the GU
	larger core counts? Do trip counts and memo	oes this loop have a de rv access patterns? Ha	ependency that pre ave I vectorized effi	vents vectorization? ciently with the later	TotaNew	Compiling Co
	I using older SIMD ins	tructions?			STAT and ATP	Additional Comp In order to compile t
	Vectorization Or	otimization: Guid	ance to Speed	up your Appli	CCDB and lgdb Valorind	Cray Compiler Wra
1			•	17 11	IPM	When using the Cray it is recommended t
				Look for us	CrayPat MAP	Advisor. To compile a
					VTune	
					Advisor	cc -g -uynamic
					Inspector Intel Trace Analyzer and	Here, the -g option is
					Collector	statically by default).
					= Policies	Without the -dynami
					- User Surveys - NERSC Users Group	
					Help	% module load
					- Staff Blogs	% srun -n 1 -c
					Bequest Repository Maili	ng adviver Errors

Acknowledgements

- This material is based upon work supported by the Advanced Scientific Computing Research Program in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.
- This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
- Special Thanks to:

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

- Zakhar Matveev, Intel Corporation •
- Roman Belenov, Intel Corporation

