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Executive Summary 

The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest 
National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), 
conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for 
BER Science.” Twenty invited participants, from various computational disciplines within the BER program research 
areas, were charged with the following objectives: 

• Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect 
molecular-scale research to BER research at larger scales. 

• Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and 
software) architectures. 

The workshop was organized into two breakout sessions and each session focused on one of the objectives above. 
Participants were also invited to contribute position papers on a topic of their choice related to multiscale simulation and a 
detailed description of one or more codes they use in their research. 

Thirteen position papers and twenty-three detailed code descriptions were received and discussed during the breakout 
sessions. Based on this discussion, a number of opportunities for multiscale linkages among the various codes were 
identified and prioritized. Challenges and potential roadblocks to implementation, and potential means of addressing 
them, were also identified and discussed. These opportunities will form the basis for EMSL strategic development of a 
topical computing capability for multiscale modeling, focused on BER science applications and beginning with molecular 
scales linking upward to larger time and space scales. 

This report documents outcomes of the workshop and provides recommendations that will guide strategic planning and 
capability development. The diversity of the applications of interest to BER scientists, and the diverse nature of the codes 
discussed, drive a need for consideration of hybrid architectures for future EMSL computing hardware. Specifically, a 
mixture of compute-intensive and data-intensive architectures is likely to best meet the needs of the scientific community. 
Design of future computational systems will draw from the results of this workshop, and continued interaction and 
partnership with scientists from selected application areas will lead to enhanced scientific impact. 

The advancement of a robust predictive understanding of complex environmental and biological systems is one of the 
primary objectives of the BER program. It requires significant advances in our ability to connect fundamental 
understanding of processes at molecular, pore and cellular scales to predictions of system behaviors at laboratory, field, 
and ecosystem scales. This workshop is the first step in development of a strategic computing resource for BER scientists 
at EMSL that will focus on this problem. 
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Acronyms and Abbreviations 

AMDF Accelerated Molecular Dynamics Framework 
BER Office of Biological and Environmental Research 
BSSD Biological Systems Sciences Division  
CESD Climate and Environmental Sciences Division of BER 
CG coarse graining 
CLM community land model 
CPU Central Processing Unit 
DPD Dissipative Particle Dynamics 
DHSVM Distributed Hydrology Soil Vegetation Model 
DOE U. S. Department of Energy 
EMSL Environmental Molecular Sciences Laboratory 
GCM Global Climate Model 
KBase DOE Systems Biology Knowledgebase 
LBM Lattice Boltzmann Method 
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator 
MD molecular dynamics 
MM molecular mechanics 
PNNL Pacific Northwest National Laboratory 
QM quantum mechanics 
SBR Subsurface Biogeochemical Research program of BER/CESD 
SPH Smoothed Particle Hydrodynamics  
TES Terrestrial Ecosystems Sciences program of BER/CESD 
UCG-MD Ultra-Coarse-Grained Molecular Dynamics 
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1.0 Background and Purpose 

The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) advances world-class 
biological and environmental research programs and scientific user facilities to support DOE’s energy, environment, and 
basic research missions. Both the Climate and Environmental Sciences Division (CESD) and Biological Systems Science 
Division (BSSD) aim to gain a predictive understanding of complex multiscale phenomena critical to BER. 

CESD issued a strategic plan in 2012 for the research programs and user facilities within the division. That plan states the 
CESD Mission as follows: 

To advance a robust predictive understanding of Earth’s climate and environmental systems and to inform the 
development of sustainable solutions to the Nation’s energy and environmental challenges. 

This mission is embodied in five goals that focus on developing fundamental process understanding of subsurface, 
terrestrial and atmospheric environments, and integrating that knowledge into earth systems simulators (“next-generation, 
integrated models of the human-Earth system”).  

Similarly, BER’s Biological Systems Sciences Division (BSSD) “seeks to gain a predictive understanding of living 
systems, from microbes and microbial communities to plants and other whole organisms. This foundational knowledge 
serves as the basis for the confident redesign of microbes and plants for sustainable biofuel production, improved carbon 
storage, and contaminant remediation.”  

The desired transition to “predictive understanding” requires computational simulation models, as simpler, analytical 
theoretical approaches can rarely incorporate the level of complexity and heterogeneity needed to understand relevant 
systems. This trend to simulation, which is occurring in many branches of science and engineering, turns to computational 
science to integrate disparate detailed information into working models capable of providing causative explanations of the 
behavior of complex systems. Simulations are used to predict, given initial conditions and guiding principles enshrined in 
a model, how a system of interest evolves. The process of simulation furnishes an integrated detailed understanding of the 
dynamic nature of biological and environmental systems, enabling scientists to perform “virtual experiments”, the results 
of which can be used to guide new real experiments to further test and refine models, in an iterative process. 

Computer modeling and simulation can rationalize experimental information across scales; this integration was, for 
example, pivotal in the recent discovery of the mechanism of microbial mercury methylation (Parks et al. 2013). 
Modeling, simulation, and 3-D time-resolved reconstruction of biological events are logical next steps in this procedure. 
Indeed, computer modeling and simulation is the only mechanism for integrating large amounts of complex, interrelated 
data in a manner that provides a causative explanation of the behavior of complex systems. Computational science has 
thus been increasing in importance in the last decades. In the next 10 years we expect computer simulation to provide the 
framework for interpreting and integrating experimental biological and environmental information at multiple time and 
length scales. 

Understanding the seamless connections inherent in biological systems is hampered by current scientific thrusts on 
particular network scales and on tools that examine only narrow windows of spatial, temporal or chemical information. 
The result is a fragmented view of biological systems that prevents understanding of the linkages and interplay between 
molecular scale events and observations that ultimately impact DOE’s mission goals in bioenergy research, element 
cycling and environmental stewardship. Critical to these advances will be the ability to model and simulate interactions 
across hierarchies and dimensions, enabling understanding of the connections between systems functioning at diverse 
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length and time scales. Multiscale simulation, meaning the simultaneous simulation of processes linking scales in length 
and time, is of particular relevance to BER. BER research ranges from atomic to global scales in length, and femtoseconds 
to decades in time. However, for the purposes of the present report we confine our discussion to multiscale phenomena on 
the lower spatio-temporal scales, and specifically, how to link molecular-scale research to higher-level phenomena. For 
biological systems this requires simulation models of the dynamic interaction of components coupling molecular, cellular 
and organismal functions.  

The Environmental Molecular Sciences Laboratory (EMSL), a DOE scientific user facility located at the Pacific 
Northwest National Laboratory (PNNL) in Richland, Washington, provides premier experimental and 
modeling/simulation capabilities for molecular-level research on energy and environmental needs facing DOE and the 
nation. By periodically engaging experts from the scientific community, EMSL identifies opportunities for future 
investments in capabilities that will lead to impactful scientific results in targeted research areas to address programmatic 
priorities within BER. EMSL comprises a unique set of experimental and computational capabilities (including scientific 
expertise as well as instruments) that can be enhanced to better address these goals in the context of serving the BER and 
broader scientific communities. A critical determinant of the success of EMSL in meeting BER research objectives is our 
ability to effectively utilize molecular-scale process understanding to inform and improve numerical simulators at larger 
scales. Accordingly, multiscale science and modeling is an important element of EMSL’s research strategy. The EMSL 
Strategic Plan 2014 states: 

We also intend to develop new paradigms for multiscale prediction and modeling, including development of new 
computational approaches to utilize molecular-scale information in models at larger spatial and temporal scales 
through mesoscale and multiscale modeling methods. This work will emphasize development of predictive modeling 
capabilities for climate, subsurface, and biological science areas, and will support the integration of EMSL 
experimental and modeling capabilities for scientific impact. (Section 3.3 Transforming Scientific Capabilities for the 
Future) 

As an initial step in development of a new multiscale modeling capability for the scientific community, this workshop had 
the following objectives: 

• Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect 
molecular-scale research to BER research at larger scales.  

• Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and 
software) architectures. 

Twenty scientists from academia and national laboratories, representing computational aspects of research in both BER 
divisions (CESD and BSSD), met August 26, 2014 in Washington, DC. Given the molecular-level focus of EMSL, the 
participants were selected to represent a range of earth system process scales from molecular up to the local land surface. 
Global land surface and atmospheric scales were outside the scope of this workshop. Other participants included BER 
program managers from both CESD and BSSD, and observers from DOE’s Advanced Scientific Computing Research 
program. A list of invited participants and observers is provided in Appendix A. 

The workshop agenda (Appendix B) was designed around the two objectives stated above. The meeting co-chairs and 
BER program manager for EMSL gave introductory presentations at the beginning of the meeting. The presentations 
provided motivation, background material, and context for this diverse scientific group. The bulk of the meeting time was 
spent in two breakout sessions, with each session focused on one of the two objectives. For each breakout session, 
participants were divided randomly into two groups and each group received the same charge questions. In this way, we 
provided an opportunity to obtain diverse input from the participants, optimize the groups’ sizes for discussion, and 
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enhance interdisciplinary interactions. The co-chairs moderated the breakout sessions and a report-back period followed in 
which the entire group discussed the ideas generated. 

Prior to the workshop, participants were asked to provide background materials in two forms: 1) completed questionnaires 
describing one or more simulation codes they use in their research, and 2) an optional two-page position paper describing 
a particular multiscale simulation problem (and potential solution approach) of interest. Code descriptions were also 
solicited from a selected set of non-participants prior to the workshop to obtain background information on codes 
important to BER programs, but not specifically represented by a workshop participant. Thirteen position papers 
(Appendix C) and twenty-three completed code questionnaires (Appendix D) were received. 

The group was comprised approximately one half from CESD areas of research (Subsurface Biogeochemistry Research 
(SBR) and Terrestrial Ecosystems Science (TES) programs), and the other half from BSSD areas of research (Genomic 
Sciences Program). BER program managers commented this was the first time to their knowledge that representatives 
from these two computationally-oriented communities met to discuss opportunities for collaboration and linkages among 
their various modeling efforts. 
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2.0 Multiscale Science and Modeling 

Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biological and 
earth systems simulators. While the bulk of this research has focused on improving model parameterizations in the face of 
observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural 
error. Such error arises from incorrect mathematical representations of (or failure to consider) important physical, 
chemical, or biological processes, properties, or system states in model formulations. While improved process 
understanding can be achieved through scientific study, such understanding is usually developed at small scales. The 
manifestation of small-scale processes at system prediction scales is confounded by non-linear interactions and 
heterogeneity that lead to emergent behavior in complex systems – behavior that cannot be predicted based on 
understanding the individual small-scale processes alone. Large-scale process-based models greatly oversimplify this 
complexity, leading to a potentially large error in the model structure and conceptualization. Unfortunately, this type of 
error is often obscured by parameter error/uncertainty, because these models typically include sufficient degrees of 
parametric freedom to allow successful reproduction of historical observations (calibration) even when the underlying 
model is incorrect. This gives a false sense of confidence in model predictions, which may be inaccurate even though the 
historical match is excellent. The potential importance of model structural error in land surface modeling (as an example) 
is emphasized by the study of Abramowitz et al. (2007), who performed numerical experiments to evaluate prediction 
errors in a synthetic system. Their results showed “as much as 45% of…error in these flux outputs is due to systematic 
problems in those model processes insensitive to changes in vegetation parameters.” They concluded “efforts to improve 
the representation of fundamental processes in land surface models, rather than parameter optimization, are the key to 
development of land surface model ability.” 

Process-based numerical models are typically designed for a particular characteristic length and time scale; except for the 
most fundamental models (e.g., quantum chemistry), it is necessary to introduce approximations to describe complex 
systems or processes. Even for molecular chemistry, it is often necessary to make empirical simplifications because of 
computational constraints. This approach has been the best available to date because of 1) limited computational power, 2) 
limited understanding of processes and how they are coupled, and 3) a lack of rigorous frameworks for upscaling 
processes. However, computational power is increasing such that national laboratories and federal agencies are already 
considering applications and designs for future exascale computers. At the same time, our understanding of biological and 
environmental processes at fundamental scales has been accelerated, but using this information to advance our knowledge 
of the larger system behavior requires the development of multiscale simulators. The lack of rigorous frameworks for 
upscaling undermines the use of simulation to test the impact and coupling of chemical, physical, and biological 
processes. In the future realm of exascale computing and beyond, simulators will be based on first principles and 
accurately describe processes at a predictive scale; however, this cannot be achieved unless we advance our capabilities in 
multiscale techniques. 

2.1 Multiscale Modeling Approaches 

Recognizing this need and opportunity, focus on multiscale modeling has dramatically increased in the last decade. For 
example, the journals Multiscale Modeling & Simulation and International Journal for Multiscale Computational 
Engineering both published their first issue in 2003. Of course, scientists and engineers were not unaware of scale issues 
prior to that, but because of limitations in computational capability most attempts to bridge scales were limited to a broad 
class of methods known as upscaling. Upscaling approaches posit a microscale model, then invoke some type of formal 
averaging procedure (e.g., volume averaging, homogenization, mixture methods) to derive an effective macroscale model 
that preserves selected averaged quantities. Once the transformation of equations and parameters from the microscale to 
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the macroscale is prescribed, single-scale simulation is subsequently performed only at the macroscale without further 
reference to microscale processes or properties. Wood (2009) points out upscaling requires imposition of one or more 
“scaling laws”, also known as closure approximations. A scaling law is an axiomatic statement about the essential 
character of the microscale system that allows reduction of the number of degrees of freedom and closure of the 
macroscopic equations. Typical scaling laws include assumptions about the statistical structure of microscale variables 
(e.g., statistical homogeneity, stationarity, and ergodicity), separation of scales, the magnitude of local fluctuations, and 
the nature of boundary conditions (e.g., infinite or periodic). When necessary closure approximations are valid, the 
microscale and macroscale models can be completely decoupled, and valid macroscale models and parameters can be 
defined that eliminate the need for explicit microscale knowledge. However, for complex systems involving multiple non-
linear coupled microscale processes and strongly heterogeneous system properties, available closure approximations are 
often overly simplistic and not applicable. 

As numerical simulation capabilities advanced, driven by continued increases in available computational power, a second 
class of multiscale simulation methods emerged known as multiresolution methods. These methods, referred to as 
“traditional” multiscale methods by E et al. (2003), provide computationally efficient ways of obtaining a complete 
solution to a microscale model. These methods are multiscale in that they use approximate upscaled (macroscale) models 
in intermediate steps to facilitate efficient computation of the microscale solution. Examples of multiresolution methods 
include multigrid solvers and preconditioners (e.g., Wesseling 1992; Trottenberg et al. 2001), multiscale finite element 
methods (e.g., Hou and Wu 1997; Jenny et al. 2003; Aarnes et al. 2005), and multiscale mimetic methods (e.g., Lipnikov 
et al. 2008). 

However, in many problems it is simply not feasible, even with multiresolution approaches, to solve the microscale 
problem of interest. These problems have recently led to a third class of multiscale methods in which microscale and 
macroscale models are explicitly coupled in some manner. The simplest form of coupling is the use of a microscale 
simulation to define effective parameters for a macroscale simulation. These methods, referred to as parameterization, 
coarse-graining (CG) or numerical upscaling methods, assume microscale and macroscale simulations can be decoupled 
and information flows only in one direction (from the fine scale to the coarse scale). Recognizing that in many cases the 
effective behavior of a microscale system is dependent on macroscopic states, the most complex multiscale approaches 
invoke a two-way coupling of microscale and macroscale models. These methods, called hybrid multiscale methods, are 
those that combine two or more models defined at fundamentally different physical length scales within the same overall 
model spatial and temporal domain. In most cases, the models also have fundamentally different ways of representing the 
physical, chemical, and biological processes. For example, several models in the materials science literature couple 
molecular dynamics (MD) simulations at the molecular scale to continuum mechanics simulations at larger scales. 

Scheibe et al. (2015) provide a more detailed review of the multiscale modeling approaches described above, including 
examples from several scientific domains. They also propose a classification scheme for methods and an approach for 
identifying which class of methods is best suited to a particular problem. Keyes et al. (2013) provide a thorough review 
and discussion of the relationship between multiscale and multiphysics models, and numerical methods for model 
coupling. 

Workshop participants provided information on multiscale modeling methods they are pursuing in their research, both in 
position papers submitted and workshop discussions. Details and examples are provided in the position papers.  
(Appendix C)
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3.0 Biological and Environmental Research Opportunities 

The morning breakout session focused on the first objective: Identify BER-relevant models and their potential cross-scale 
linkages that could be exploited to better connect molecular-scale research to BER research at larger scales. 
Accordingly, the breakout session groups were assigned the following tasks: 

• Catalog a suite of existing codes relevant to the BER science scope, identifying their critical features, existing 
linkages if any, and areas for potential new linkages up or down scale. 

• Identify and prioritize linkages that could be made between existing codes within short-, intermediate-, and long-term 
time frames. 

Both groups initially struggled to answer the charge; two preliminary hurdles needed to be overcome before the groups 
could dig deeper into specific codes and linkages. First, it was noted that focusing on codes was premature without 
considering basic science issues. Second, because participants had diverse backgrounds, some discussion was needed to 
get everyone on the same page (understanding different jargon and perspectives). As a result, some discussion around the 
charge continued during the first part of the second breakout session. A summary follows with key discussion points and 
recommendations of both breakout groups related to the breakout session one charge, whether those came from the first or 
second breakout session. 

3.1 Science Challenges 

Several overarching domain-oriented scientific challenges that motivate and/or impact multiscale model integration were 
identified: 

• For reactive transport models, fundamental reaction rates cannot be used to predict at larger scales where mixing is 
incomplete. Subsurface systems are characterized by evolving (nested) scales of heterogeneity for which there often 
exists no clear scale separation. As a result, simplifying assumptions needed to obtain macroscopic phenomenological 
models are often violated and there is a need to explicitly consider finer scales. 

• Strong disparities exist in time scales of various models, which can be a practical hurdle when trying to model 
multiple physical length scales simultaneously. 

• For metabolic modeling, there are too many reactions within a cell, each with associated variable reaction rates. It is 
impossible to measure or infer all these rates and they are not static.  

• For microbial community modeling, a daunting challenge is how to combine the effects of large numbers of different 
organisms within a natural system (e.g., a soil).  

• We often do not know for a given model application the conditions under which coarse-scale models are inadequate, 
and what fine-scale information is specifically needed. When does coupling need to be tight vs. loose, two-way 
dynamic vs. one-way static? 

• In some cases we are unable to measure variables that we can simulate at the microscale. A coarse (low-
dimensionality) observable cannot be used to validate a fine model output. 

• In many cases, atomistic simulations require extensive simulation of “typical” conditions before something 
“interesting” happens. Identifying rare events and developing ways to minimize computation of routine conditions is 
an important challenge. 
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3.2 Code Base 

Twenty-two detailed code descriptions were provided by the workshop participants (and by selected owners of codes 
significant to BER research, but not represented by a workshop attendee) in response to a questionnaire from the 
workshop organizers. The detailed descriptions are provided in Appendix D. These codes fall into four broad categories: 

1. Atomistic to coarse-grained scale computational chemistry/biochemistry codes: 

○ AMBER: molecular mechanics (MM) and quantum mechanics (QM)/MM MD. 

○ Accelerated Molecular Dynamics Framework (AMDF): Long time-scale atomistic simulations. 

○ CHARMM: Biomolecular simulation. 

○ GROMACS: MM/MD. 

○ NAMD: MD. 

○ GAMES: Quantum chemistry. 

○ GAUSSIAN: Quantum chemistry. 

○ NWChem: Computational chemistry. Simulates chemical reactions; electronic structure of molecular 
assemblies, biomolecules, nanostructures, and solid-state; ground- and excited-state chemical processes; 
molecular properties and relativistic effects.  

○ protoMD: Self assembly, structural transition, and chemical reactions in nanoscale supramolecular 
assemblies. 

○ RAPTOR: Rapid Approach for Proton Transfer and Other Reactions (add-on to LAMMPS). Performs 
reactive MD simulations. 

○ REACH: Coarse-Grained Molecular Dynamics. 

○ UCG-MD: Performs highly scalable coarse-grained MD simulations, especially “ultra” coarse-grained 
models. 

2. Cell-scale metabolic modeling codes: 

○ Boltzmann: Simulation of sets of coupled reactions using statistical thermodynamics/fluctuation theory. 
Applications in cell metabolic modeling as well as nanotechnology and materials. 

○ COBRA: Metabolic network modeling. Simulates intracellular metabolic reaction rates, cellular growth, 
cellular consumption/production rates. Based on genome-scale reaction networks and flux balance analysis 
methods. 

○ PLAS: Biological systems analysis. Simulates biological processes, typically metabolic pathway systems. 

3. Pore-scale fluid flow, solute transport, and biogeochemical reaction simulators: 

○ Unnamed code: Pore network model for pore-scale simulation coupled to continuum-scale simulators for 
single-phase fluid flow (Newtonian and non-Newtonian fluids), transport, and reactions. 

○ ChomboCrunch: Pore-scale single-phase fluid flow and reactive transport. Note: This code was mentioned in 
the description of CrunchFlow/EcoTrait (see below) and a separate description was not provided. 

○ Reactive transport Lattice Boltzmann Method (LBM): Simulates pore-scale multiphase flow and reactive 
transport, including liquid/gas flow with phase transition, heat transfer, and mineral precipitation/dissolution. 
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○ Smoothed Particle Hydrodynamics (SPH) and Dissipative Particle Dynamics (DPD) modules in LAMMPS: 
Multiscale, multiphase, and multiphysics modeling using SPH and DPD methods. Simulates flow of complex 
fluids (non-Newtonian fluids, plastic materials, and suspensions), soft matters (polymers, colloids, and 
microbial cells), and moving interfaces and boundaries. 

○ Taxila LBM: Pore-scale multiphase fluid flow with limited transport and reaction capability. 

○ Transient Energy Transport HYdrodynamics Simulator (TETHYS): Simulates laminar and turbulent 
incompressible fluid flow, energy transport, and solute transport. Multicomponent reaction capability under 
development. 

4. Continuum-scale fluid flow, solute transport, and biogeochemical reaction simulators: 

○ Community Land Model (CLM)/PFLOTRAN: Land surface model that includes 2-D surface flow and 3-D 
subsurface flow and reactive transport processes. 

○ CrunchFlow: Simulates single-phase fluid flow, transport, and (bio)geochemical reactions at multiple scales 
(pore to field scales). See also ChomboCrunch description above under pore-scale simulators. 

○ CrunchFlow/EcoTrait: Microbial trait-based reactive transport. Simulates variable density flow, advective-
diffusive-dispersive transport, and multicomponent reactions including microbially mediated reactions with 
thermodynamic considerations. 

○ Distributed Hydrology Soil Vegetation Model (DHSVM): Distributed, physics-based approach to solve 
coupled energy and water balance equations describing watershed processes at high spatial (10 to 90-m) and 
temporal (hourly) resolution.  

○ eSTOMP: Extreme-scale subsurface transport over multiple phases. Simulates nonisothermal multiphase flow 
and multicomponent reactive transport, coupled geomechanical deformation. 

○ MOSART: Model for scale-adaptive river transport. Simulates reach-scale water flow in rivers, including heat 
transport and biogeochemical fluxes. 

○ PFLOTRAN: Subsurface reactive multiphase flow, heat transfer, multicomponent solute transport and 
biogeochemical reactions, geomechanics, and multiple interacting continua. 

3.3 Opportunities for Multiscale Linkages 

The breakout group participants identified a number of opportunities for linkage of the above codes (and others) in BER-
relevant science applications. One breakout group went so far as to identify and prioritize seven concepts: 

1. Bacterial organization within a cell, including mesoscale phenomena and compartmentalization, bacterial 
membranes, flagellar motors, cytoskeleton, and other organelles. Fine-scale methods could include CG molecular-
scale methods such as implicit solvent/brownian dynamics, linked to mesoscale models. It was noted that 
mesoscale codes currently are in their infancy, although experimental data are rich (e.g., BSSD mesoscale 
imaging pilot program). The proposed approach would connect models to experiments across scales (tomography 
and imaging), and consider self-organization of function (not structure only). An example that was discussed 
more extensively in the second breakout session is the exchange of genetic information in yeast cells by a process 
initiated by pheromone reception. This process involves restructuring the cytoskeleton that changes the dynamics 
in a way that cannot be effectively modeled by a standard reaction/diffusion process. For this example, the 
approach would use an agent-based structural model of filaments composing the cytoskeletal structure to inform a 
coarser reaction/diffusion model in a dynamic two-way multiscale approach. Another example discussed in the 
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second breakout was bacterial cell wall polymorphism and bacterial outer membrane transport. For this example, 
doing a complete simulation with MD resolution is computationally impossible, but simplification could be 
achieved by coupling transport to a diffusional model at coarser resolution. 

2. Metabolic pathway models informed with kinetics/functionality defined from free energy calculations (fluctuation 
theorem) and chemical potential values (at steady state). The proposed approach would implement a multi-agent 
simulation (e.g., Biocellion code), where each agent represents an idealized model of metabolism (e.g., 
Boltzmann code), with free energy calculations performed by a computational chemistry code (e.g., NWChem). 

3. Simulate multiscale dynamics of metabolic pathways (regulation, non-steady-state). The proposed approach 
would perform cellular-scale simulations informed by measurements of finer-scale processes (specifically, time 
series of metabolite levels) derived from stimulus/response experiments. 

4. Extend rare event models to longer time scales. It was noted that at the atomistic scale, milliseconds are 
considered long time-scales, but a similar approach could be applied to problems with other length and time 
scales. The proposed approach has been previously applied to fracture propagation in materials. Some BER-
relevant extensions were identified including diffusion in clays and precipitation/dissolution reactions, possibly 
carbon sequestration. To implement this approach, we need to identify a critical spatial gap, i.e., a rare event. 

5. Coupled 3-D reactive transport/land surface modeling. This is currently being done on the Next-Generation 
Ecosystem Experiment (NGEE-Arctic) and Accelerated Climate Modeling for Energy (ACME) projects, but over 
the longer term could be generalized and broadened. In order to refine existing approaches, we need to know what 
difference inclusion of 3-D reactive transport models makes in flux predictions, and under what contexts and for 
which variables? 

6. Dynamical non-linear systems in which an infinitesimal difference in initial conditions leads to divergent 
behaviors (chaotic systems). The proposed multiscale approach is equivalent to statistical sampling of an 
ensemble of MD simulation trajectories. 

7. Coupling pore-scale simulators with reservoir- or aquifer-scale models. A critical area that was identified for this 
was better representation of pore-scale geometry modifications coupled to geochemical reactions and 
geomechanical processes, but other applications could benefit as well. 

The group provided an initial prioritization of these seven concepts 
in the form of a plot shown in Figure 3.1.  In that figure, the seven 
items are ranked in terms of perceived potential impact (vertical 
axis) and perceived difficulty (cost/time required to achieve 
progress – horizontal axis). 

The other breakout group raised three concepts, but did not discuss 
them in detail: 

• Development of a protein homology model database to provide 
ligand binding information to plug into metabolic models. 

• Hydrology/plant/microbial model interfaces. 

• Scalable CG algorithms including load balancing. 

Additional ideas were introduced and discussed during the second 
(afternoon) breakout session, but are included here to maintain 

 
Figure 3.1  Diagram indicating prioritization of the seven 
target multiscale concepts/problems. 
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clearer organization: 

• Linkage of molecular-scale fluid model and CFD simulation to evaluate critical hydrodynamic conditions (such as the 
assumption of no-slip boundary condition in pore-scale models). 

• Modeling flux through a biochemical pathway (e.g., series of enzymes mediating a conversion). Pre-compute MD 
and/or CG simulation results for each individual enzyme in the pathway. To model interaction of two enzymes, use 
Brownian dynamics with a master equation approach based on the tabulated properties. 

• Modeling dynamics of intracellular molecules (sub-nanometer up to subcellular scale) to simulate the environment for 
intracellular reactions. This requires methods to decouple models of reacting molecules at atomic-level detail with CG 
models of the intracellular environment (crowded or dilute) through calculation of potential mean force of reacting 
molecules in the cellular context. For example, one might treat proteins as rigid body molecules and simulate 
movement, then model interaction between two proteins in the cellular context as one step in a metabolic pathway. 

• Modeling viruses and/or ribosomal systems. The proposed approach would use Newtonian mechanics (slow 
processes) to constrain atomistic simulations (e.g., MD). Using methods similar to equation-free modeling, one would 
obtain the rate of change of macroscopic variables from microscale simulations and then advance them in time, 
iterating between the two scales. 

Significant time was spent in the morning discussing specific codes among the multidisciplinary participants to support 
improved understanding of potential linkages. Selected proposed linkages provided by code owners in the code 
questionnaires follow (see Appendix D for full descriptions): 

• CLM/PFLOTRAN: 

○ Investigate impact of explicit representation of 3-D subsurface flow and transport processes on land surface 
fluxes of water, energy, and carbon. 

○ Aid in the development of reduced order models for representation of subsurface processes (Pau et al. 2014). 

• AMDF: 

○ Linkage to mesoscale using diffusive boundary conditions to exchange mass. 

○ Linkage to mesoscale using CG MD approaches. Roughly corresponds to coupling to an FEM code for far-
field elasticity. 

○ Linkage to mesoscale by providing parameters such as equations of states, or catalogue of nanoscale 
processes and associated rates.  

○ Linkage to mesoscale using equation-free/HMM multiscale methods. MD becomes a computational kernel for 
these higher scale methods. 

○ Linkage to quantum calculation by doing ab initio MD (forces computed from quantum mechanics, classical 
equations of motion) or path integral MD (effective quantum equations of motion). 

• Pore-Scale/Continuum-Scale Coupling: 

○ Tightly coupled hybrid simulations have been performed (Mehmani et al. 2012, Mehmani and Balhoff 2014). 

○ Hierarchical upscaling of macroscopic parameters (e.g., reaction rates, dispersion coefficients, permeability) 
is also possible. 
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• Boltzmann: 

○ Potential linkage to 10-6 to 10-3 scale – QM-MM enzymatic reactions. 

○ Linkage to simulation at >10-6 scale – nutrient flow/changing environmental conditions. 

• NWChem: 

○ Hybrid QM/MM formalism: all types of ab initio methods can be used for describing quantum region 
including many-body perturbation theory, coupled cluster, density functional theory, and time-dependent 
density functional theory formulations for excited state processes. 

○ Novel algorithms to extend temporal scales. 

○ Extending length scales through continuum models (Classical DFT/RISM). 

○ Interfaces to large-scale MD codes (Amber/LAMMPS). 

• Reactive Transport LBM: 

○ Has been coupled in hierarchical fashion to continuum reactive transport simulations (Lichtner and Kang, 
2007). 

○ Has been coupled in concurrent fashion to continuum reactive transport simulations (Coon et al., 2012). 

○ Has been coupled in concurrent fashion to finite volume method (Navier-Stokes Equation) for reactive 
transport in micro reactors (Chen et al., 2013). 

○ Has been coupled in hierarchical fashion to density functional theory calculation to study effect of chemical 
evolution on radionuclide leaching (Zhang et al., 2013). 

• Taxila LBM: 

○ Can be used to characterize retention curves for multiphase flows. 

○ Can be used to inform interfacial area upscaling strategies. 

• AMBER: 

○ Connect QM with MM simulations, both still at atomic resolution (QM adds electrons) but allow atoms to 
move smoothly between the QM and MM region in a way that obeys detailed balance, conserves energy and 
angular momentum. 

○ Linkage to CG and mesoscale simulations would be very interesting if the interaction between the two regions 
can be accurately defined and particles can move between the various scales in a way that obeys detailed 
balance, and conserves energy and angular momentum. 

• CrunchFlow-EcoTrait: 

○ CrunchFlow has been linked to Chombo for use as a geochemical engine that leads to the largest ever reactive 
pore scale simulations (Molins et al., 2012; Steefel et al., 2013; Molins et al., 2014) used to evaluate 
continuum scale (upscaled) rates. Chemical process models can be applied at different scales with conceptual 
adjustments (e.g., surface area as a bulk parameter at continuum scale, or as an explicit reacting boundary at 
pore scale). 

○ Micro-continuum modeling (continuum modeling at micron scale) to understand evolution of reactive surface 
area (Noiriel et al., 2012), or evolution of porosity and diffusivity (Navarre-Sitchler et al., 2009). In both 
instances, parameters are applicable at larger scales. 
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○ The EcoTrait biological module can be applied across multiple scales when coupled to a geochemical engine 
like CrunchFlow, which can then couple to continuum flow and transport codes (e.g., Amanzi, Parflow). 

• eSTOMP: 

○ The reaction module has been coupled with genome-scale metabolic models by exchanging fluxes between 
models at different scales. 

○ It can be coupled to pore-scale simulation to resolve mixing-controlled reactions at a scale where well-mixed 
reaction rate formulations are appropriate. For example, effective reaction rates simulated at pore scale can be 
provided to eSTOMP to simulate continuum-scale phenomena (e.g., Scheibe et al. 2014). 

• SPH/DPD in LAMMPS: 

○ By analogy to MD, a broad class of particle methods facilitate concurrent coupling of complex physics and 
chemistry across multiple scales, i.e., from atomic to continuum scales. 

• PFLOTRAN: 

○ Has been coupled with Lattice Boltzmann for pore-scale simulation (experimental). 

○ Has been coupled with CLM to study impact of 3-D subsurface flow and transport processes on land surface 
fluxes of water, energy, and carbon. 

○ Linkage to fine scale nuclear waste package degradation models under development 

○ Embedded multi-continuum model for resolving fine scale heat transfer and reactive transport. 

• COBRA: 

○ Input connections: Extracellular concentrations derived from macroscale transport models (Tartakovsky et al., 
2013); kinetic parameters derived from protein models. 

○ Output connections: Fluxes can be used in transport models (estimating biotic transformation rates); can be 
used in bioprocess models (e.g., reactors); fluxes can be used to model interactions in microbial communities 
(e.g., photosynthetic mats). 

• TETHYS: 

○ Linkage to simulation at larger spatial scales is typically accomplished by providing boundary conditions 
from the larger scale model to inflow or outflow boundaries. Linkage to watershed, river basin scales is 
possible in this manner. 

○ Linkage to atmospheric forcing models can be accomplished through one-way coupling. Loose coupling 
could also be done via file sharing methods. 

• CrunchFlow: 

○ Currently we are developing reactive transport modules to link with the hydrology and land-surface 
interaction code FLUX-PIHM at the watershed scale. There is interest in connecting subsurface 
biogeochemical processes to continental scale or global scale. 

• DHSVM: 

○ Has been coupled with detailed hydrodynamic models to provide the influx of water and sediment to river 
system. 
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○ Has been coupled with regional climate and weather models for hydrologic forecasting and to evaluate the 
impacts of climate change on hydrologic processes. 

○ Has been coupled with detailed groundwater models to provide topographically-driven surface boundary 
conditions. 

○ Can be coupled with dynamic vegetation models. 

○ Can be used to estimate parameters for macroscale land surface models (e.g., GCMs). 

• protoMD: 

○ Self-consistent use of field variables as the CG descriptors allows seamless and rigorous coupling to reaction-
transport-mechanical continuum codes. 

○ Multiscale algorithms can be developed to naturally integrate simulation with a variety of 
nanocharacterization experimental data techniques. 

• LAMMPS-Raptor: 

○ Robust multistate reactive models (i.e., force field parameters) can be derived from condensed phase ab initio 
simulations at smaller scales, (10 Å)3 and 10–100 picoseconds. 

○ Atomistic reactive simulations can be used to derive input for large-scale CG models (e.g., position-
dependent diffusion constants in smoothed-particle hydrodynamics) to access larger length and time scales 
(mesoscopic). 

• UCG-MD: 

○ Information from more detailed simulations (ab initio, all-atom) is typically used as the basis for CG 
molecular structures and force fields. 

○ The Voth group is actively exploring rigorous approaches to couple CG-MD simulation results to mesoscale 
representations (smoothed particle applied mechanics) and field theoretical approaches. 

3.4 Critical Issues in Multiscale Modeling 

In the process of discussing potential opportunities for multiscale linkages, the breakout groups also identified several 
important model-focused issues/challenges that cross-cut various application domains. 

• How can multiscale models be tested and validated? A set of standards are needed for error propagation and 
uncertainty quantification to make multiscale modeling more systematic and as verifiable as possible. The models 
must make predictions that can be tested experimentally (or in some cases against other computational methods).  

• A process is needed for deciding which model(s) and multiscale approaches are appropriate for a given problem. The 
example given was KBase, in which various pieces of data or models can be linked together in different ways. KBase 
has a narrative (like a decision tree) that guides users to appropriate methods.  

• What is the appropriate level of complexity for multiscale models? In general it is desirable to make a model as 
simple as possible to achieve desired predictive power, but no simpler. Formal mathematical methods can provide 
insight into when more or less complex couplings are required. 

• Loose coupling methods commonly used to link models non-invasively are difficult to analyze numerically. In some 
cases, it may be difficult to prove a model system will converge to a solution and to determine what conditions should 
be imposed for stability and accuracy (grid sizes, time steps).
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4.0 Computational and Data Needs 

The afternoon breakout session focused on the second objective: Identify critical science directions that will motivate 
EMSL decisions regarding future computational (hardware and software) architectures. Accordingly, the breakout 
session groups were assigned the following tasks: 

• Identify new mathematical algorithms and software frameworks needed to support development of multiscale 
linkages across the BER code suite. 

• Identify critical data needed to support integrated multiscale simulations. 

• Identify key attributes of computational hardware needed to perform integrated multiscale simulations. 

4.1 Algorithmic Considerations 

Several important potential approaches and associated algorithm considerations were identified by the breakout groups: 

• Interdisciplinary communication: Multiscale coupling often involves integrating models developed by different 
scientific disciplines (e.g., fluid dynamics and microbial metabolism). Scientists know their own algorithms and codes 
(and their limitations) well, but communication to scientists from other disciplines is often difficult. 

• Sharing large files between different codes can lead to inefficiency in computational algorithms. Therefore, the 
definition of standard interfaces is a critical element of new algorithms (e.g., LAMMPS interface). It would also be 
very useful if application codes and computational architectures could address this issue. For example, 
CLM/PFLOTRAN coupling uses virtual files stored in RAM rather than disk files, which is much more efficient but 
requires a wrapper around both codes. Domains may be decomposed or discretized differently in various models, 
creating another challenge when sharing large datasets. 

• Many alternative codes exist that solve the same or similar problems. Therefore, interoperable exchange of codes in a 
multiscale framework is a key attribute. Model interfaces must be defined as code-independently as possible to 
facilitate flexibility for long-term solutions. Model interfaces (i.e., APIs) should also have flexibility to accommodate 
multiple alternative conceptual models at each scale of interest, which again requires model-agnostic interfaces. 

• In general, multiscale science is not yet mature. Some seemingly obvious (trivial) couplings exist, but are typically ad 
hoc and not general and physically rigorous. For most problems we do not know the conditions under which fine-
scale information is specifically needed (or not), and when coupling needs to be tight or loose, two-way dynamic or 
one-way static. In the broader domain modeling communities, multiscale modeling methods are not well known or 
understood. 

• In some cases, two-way multiscale simulation could be accomplished without tight coupling of codes performing 
linked simulation in real time. An approach was suggested in which tight coupling would be replaced with loose 
coupling through a lookup table method. In this approach, a set of coarse-scale conditions is prescribed for which 
fine-scale behaviors are pre-computed and stored for later use in coarse-scale simulations. 

4.2 Data Needs 

It was noted by both breakout groups that there is an important need for multiscale experimentation to provide a basis to 
evaluate and validate multiscale simulations. Strong communication between experimental and computational researchers 
is required to ensure the right variables are measured at the correct scales. Transient and dynamic measurements are likely 
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to provide much greater value than steady-state observations. In some cases, “data” could also take the form of high-
resolution simulations performed to provide a numerical standard (benchmark) for testing alternative multiscale 
approaches. In this context, the discussion of data needs in the second breakout session took the form of a brainstorming 
session in which participants highlighted a number of data needs specific to their application areas of interest: 

• Fluorescent labeling of proteins and imaging localization within intracellular environment. 

• Cryo-EM and other microscopies to obtain low-resolution shapes of molecular complexes (quaternary structure). 

• Adaptive bio-imaging (various spectroscopic methods) to determine localization of proteins in the cell membrane. 

• HR mass spectrometry to determine the spatial distribution of individual molecules (e.g., metabolites). 

• Improved tomographic imaging of pore-space geometry of soils and aquifer materials. 

• Information about the structure of other porous materials (e.g., cell membranes). 

• Measurements of relative uptake of metabolites by different members of a microbial community (intermediates 
between organisms hard to observe as they are taken up rapidly). 

• Measurements needed to infer regulatory patterns, such as metabolic time series data (e.g., NMR methods). 
Additional spectral libraries are needed to identify unknown compounds. 

• Measurements of soil carbon (dissolved and solid phase).  

• Improved and more extensive measurements of CO2 fluxes. 

4.3 Hardware Needs and Recommendations 

The final part of the second breakout session considered alternative computational architectures to support multiscale 
simulation. The discussion focused around three primary points: 

1. The scientific computations relevant to BER science are highly diverse and a “one size fits all” approach to 
computational architecture is not likely to be effective. For example, some problems are very well suited to hybrid 
CPU-accelerator architectures (e.g., MD), others require large memory, while yet others need architecture to 
support coupled simulation and visualization of large datasets. Given this consideration, it was strongly 
recommended that EMSL consider purchasing a computational system that incorporates multiple node types 
focused on different application needs. 

2. More of our applications are requiring advanced analysis of large datasets in conjunction with compute-intensive 
applications. An example is the generation of time-dependent probability distributions from large numbers (e.g., 
10,000) of computational chemistry trajectory simulations. It would be advantageous to perform data-intensive 
post-processing “where the data are.” This consideration again points to the need for a heterogeneous system, in 
this case with a portion of the system designed for compute-intensive and part designed for data-intensive (e.g., 
Hadoop) computations. For the example discussed, instead of writing all the trajectories to disk and transporting 
data to another system for subsequent post-processing, the trajectories could be communicated to distributed disk 
or memory on the data-intensive portion of the system and immediately analyzed using a map-reduce algorithm. 

3. Since many problems of interest are biological in nature, the question was posed: “How does biology do it?” That 
is, can we design and build computational architectures that reflect the nature of the problem we are trying to 
solve? Purpose-built systems for computational chemistry have been developed (e.g., D.E. Shaw), but are more 
expensive than multipurpose architectures based on commodity components. Some consideration should be given 
to potential implications of multiscale modeling needs in this context. 
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5.0 Future Strategy 

5.1 Biological Systems Science 

Many important processes in the energy and environmental sciences involve biological organisms, particularly microbes. 
Research on microbial systems has led to a massive influx of “big” data produced by high-throughput experimental 
approaches. These data, as corralled by the DOE Systems Biology Knowledgebase (KBase), have yielded much insight 
into biological systems. However, whereas systems biology efforts until now have largely been in the realm of large-scale 
cataloguing efforts (e.g., genomics, proteomics, metabolomics, etc.), the need has now transformed to understanding how 
these components work together i.e., constructing working physical models from the “parts list.” 

In BSSD, scientists are using genome sequence and other comprehensive datasets (molecular, spatial, and temporal data) 
to build models of signaling networks, gene regulatory circuits, and metabolic pathways. However, static systems models 
will need to be assimilated into multiscale simulation engines capable of exploring hypotheses relating micro- and macro-
scale system function and dynamics, understanding how processes on smaller scales lead to larger-scale phenomena 
(Figure 5.1). The challenge is to feed biological big data into simulation models that incorporate spatiotemporal elements. 
One way of thinking of this is a transformation of omics into 3-D models evolving with time.  

Systems biology goes beyond the consideration of single macromolecules to obtain holistic information about interacting 
biological systems, such as metabolic networks, genomics and proteomics. However, an important element missing from 
these descriptions is a 3-D picture of the systems involved. This 3-D view requires knowledge of macromolecular 

structure and dynamics, the positions of sub-cellular structures 
in the cell, the positions of macromolecules with respect to 
these expressed structures, and the distribution of smaller 
species such as solvent, metabolites, and ions. Once a 
molecular-level 3-D model of the cell is established it will be 
necessary to use simulation to follow the evolution of this 
system with time. 

This thrust will need to be pursued in a concerted, 
multidisciplinary effort with tight coupling between 
experiment and simulation. DOE is ideally placed for 
multiscale research on the nanoscale through the millimeter 
scale, by virtue of its large-scale facilities for molecular 
research, including next-generation synchrotron radiation, 
neutron scattering and supercomputing. The optimal use of 
these facilities in the service of multiscale simulation will be 
of increasing value.  

Creating simulation models that correctly predict cellular 
system response to external perturbations requires many 
quantitative detailed inputs such as protein structures, kinetic 
constants, enzyme activities, and dynamic metabolic 
processes. Some of these will themselves need to be derived 
computationally. The simulation goal presents a formidable 
challenge, but emerging computational research approaches 

 
Figure 5.1  Alcohol resistance in a mutant of Clostridium 
thermocellum was traced to just two amino-acid residues in the 
enzyme alcohol dehydrogenase (Brown et al. 2011). 
Understanding the cell-scale repercussions of molecular scale 
perturbations is a goal of multiscale simulation. 
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provide new opportunities to bridge the knowledge gap of complex systems and facilitates scaling concepts and data 
across multiple levels of biological organization. Interfacing simulation methods at different scales by informing larger-
scale, coarse-graining (CG) methods with results from finer-detail computations will lead to a self-consistent description 
of mechanisms in and between cells.  

The scaling and use of multiscale codes on DOE supercomputers will be integral to the success of this approach. The 
march of supercomputing towards the exascale will furnish major opportunities for detailed simulation. The major 
challenge, then, is to design methods that incorporate detailed molecular, biochemical, physiological, and structural 
information into accurate systems-level biological models and simulations while using the variable and sometimes 
esoteric architectures of modern-day high-performance computing. 

Computer modeling and simulation can rationalize experimental information across scales. Essential aspects of simulation 
development will be 1) integrating available experimental information obtained from experimental imaging techniques 
and omics-based systems models, into simulation models, 2) testing and improving simulation methods by comparison 
with additional obtained experimental information, and 3) interfacing of simulation methods at different scales, by 
informing larger-scale, CG methods with results from finer-detail computations. The hoped-for result will be a self-
consistent, description of mechanisms in and between cells. The scaling and use of these codes on supercomputers will be 
integral to the success of this approach. 

Multiscale simulation in biological systems science extends upwards from quantum chemistry. Indeed, the 2013 Nobel 
Prize in Chemistry was awarded for the development of multiscale computational techniques that couple quantum and 
molecular mechanical systems (Smith and Roux 2013) and these mixed, QM/MM techniques have been applied to study 
systems of special interest in the energy biosciences (Parks et al. 2009). Enzyme reactions are critical to systems biology. 
The QM/MM techniques for computing reaction mechanisms and the associated energetics need to be improved and 
accelerated to the point where they provide missing information in metabolic pathway maps and guide rational 
engineering of enzymes. Indeed, a major challenge for the future will be how to accurately incorporate chemical 
reactions, which occur on the femtosecond timescale into cell-level models evolving on timescales many decades slower. 

The majority of molecular-scale calculations in recent years have been performed with the MD technique, using empirical 
force fields. Force fields for these simulations need to be improved. Improvement in computer power and algorithmic 
simulation efficiency is of no use if interactions are inaccurate. This requires the comparison of computed quantities with 
experimental and quantum-chemical data obtained on smaller scales in a self-consistent manner. 

Atomistic simulations provide information on the response of macromolecules to ligand binding, and on the diffusion and 
transport of metabolites and proteins in crowded cellular environments. An important foundation for multiscale systems 
simulation is the knowledge of macromolecular structure and dynamics, the positions of sub-cellular structures in the cell, 
the positions of macromolecules with respect to these expressed structures, and the distribution of metabolites and ions. 
Supercomputing now permits the simulation at atomic detail of systems up to 100M atoms in size and on the microsecond 
timescale. Hence, atomistic MD has moved well beyond the single-molecule level to permit systems-level simulation of 
hundreds of interacting biological macromolecules such as those involving transport of chemical signals across the 
cellular membrane. Indeed, extrapolation of current performance at the petascale to the exascale indicates we would 
ultimately perform MD simulations of systems of ~1011 explicit interacting atoms, i.e., approximately the number of 
atoms in a bacterial cell for about 10 microseconds. Existing genomic and structural data, together with spatially-resolved 
data provided by experimental techniques proposed above, will provide information on starting configurations for large-
scale simulations of subcellular systems.  
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However, serious limitations to MD exist, including a severe scaling problem limiting system sizes and timescales. Work 
is needed to overcome this obstacle. Approaches that will need to be developed to permit scaling up of MD include 
methods to improve sampling to more efficiently cover the phase space of systems of interest. For this, methodological 
and algorithmic improvements aimed at ‘ensemble-based’ simulation of sub-cellular systems will be required, including 
the rapid calculation of electrostatic interactions. Some of these approaches will involve independent sampling of regions 
of phase space followed by intelligent recombination. Furthermore, some of these approaches are inherently scalable and 
may be developed for use on exascale machines.  

Improved, multiscale atomistic MD sampling methods are needed to understand the mechanisms of function of enzymes 
and macromolecular machines critical to the energy biosciences. These methods and algorithms will need to efficiently 
use the full available computational power to understand folding, allostery, binding, and reaction. Thermodynamics and 
energetics at the single-protein level are also critical to understanding cellular energy flow. We need to master structural 
controls of redox potentials of electron donors and acceptors, and to refine methods for calculating free energy profiles of 
enzymatic reactions. We need to develop methods for reliably predicting protein structures (in the absence of a close 
structural homolog), protein:protein and protein:ligand associations. We also need to develop methods for reliably 
predicting protein:protein and protein:ligand associations in a high-throughput manner. This type of development parallels 
needs in health sciences and can utilize supercomputer capabilities for massive-scale computational screening. Elucidating 
these mechanisms will permit deeper understanding and derivation of principles of biological functions, from the 
molecular level up to the whole microbe level, permitting their reliable engineering using site-directed mutagenesis. 

Beyond improving sampling in atomistic MD, there is much current activity in CG MD. (Figure 5.2) Events in the cell 
that are on the millisecond timescale or longer, and system sizes beyond 100M atoms, call for simpler simulation methods 
than atomistic MD, averaging out the unimportant degrees of freedom to preserve long time-scale properties. Important 
processes occurring in the millisecond-second time window include protein folding and dynamics, macromolecular 
associations, receptor activation, lateral diffusion and phase separation in membranes, and the catalytic cycles of 
transcriptional and translational machinery. 

The CG methods can scale efficiently on a variety of supercomputers (Grime and Voth 2014) and will permit cell-scale 
simulations on timescales up to one second or more 
allowing tracing the diffusion of macromolecules and 
metabolites across the cell, including the crowded 
cellular environment, providing information on system-
dependent diffusion constants and associations between 
multiple molecules in the cytoplasm and at membranes. 
The CG challenge is to filter phenomena on short time 
and length scales that have mesoscopic consequences, 
so as to not ‘throw the baby out with the bathwater’ 
when conducting CG while maintaining rigorous self-
consistency. Brownian dynamics simulation is among 
the methods requiring further development. This 
simulation removes explicit solvent and permits 
simulation of systems 100× larger or longer than those 
accessible to MD. Methods need to be developed to 
merge atomistic MD with Brownian Dynamics 
simulations and transfer results of these calculations to 
whole cell descriptions. 

 

Figure 5.2  Supramillion atom structures of interest in materials 
engineering, environmental remediation, and renewable resource 
generation are being efficiently designed and analyzed with a 
Multiscale MD Toolkit. 
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The CG approaches typically first choose a functional form that is then parameterized by iteratively adjusting required 
parameters (for example, based on the potentials of mean force or on reverse Monte Carlo methods) to reproduce the 
average atomic-detail structure or thermodynamic or fluctuation data. Another approach matches effective forces on CG 
particles to those from atomistic simulation (Izvekov and Voth 2005). The CG parameters in the above methods are 
determined a posteriori, often with an iterative fitting procedure to reproduce target data. A different approach, aimed at 
probing collective motions, derives CG force constants directly from the variance−covariance matrix calculated from all-
atom MD (Moritsugu and Smith, 2007); this kind of technique is a direct mapping, requiring no iterative fitting and no 
experimental input data. 

The CG approaches taken can be based on the co-evolution of atomistic and CG model systems (e.g., Figure 5.2). The CG 
variables may be determined based on microscopic variables, and algorithms for their co-evolution using rigorous 
mathematical approaches. Because the CG and microscale systems are co-evolved over time, atomistic structural and 
chemical processes can both respond to and impact their microenvironments (Somogyi et al., 2014). Other CG models are 
not derived directly from a fine-grained model but are instead inferred from a combination of physical principles and 
empirical observations, with the model iteratively refined through guided fine-scale (all-atom) simulations combined with 
further experimental observations (e.g., Ayton and Voth, 2010). 

Incorporating large-scale biological data into MD and CG, and scaling these up to whole-cell processes now looms as a 
critical and largely undeveloped area of systems biology. To handle spatial inhomogeneity and efficiently simulate time 
scales on the order of the cell cycle (minutes to hours), permitting whole cell and colony simulations, requires stochastic 
modeling techniques for systems of biochemical reactions inside a cell. These techniques should allow us to address 
complex events such as signaling cascades, transcription, translation and degradation, biofilm formation and cell division. 
Finally, moving beyond the level of individual organisms, new methods are needed to address biological variables at the 
community scale and understand evolving interactions with external signals from the environment. These may involve 
concepts from complexity theory, including the simulation of non-ergodic, non-stationary systems well out of equilibrium. 
Indeed, such concepts permeate the living world, from single proteins up to earth systems. 

5.2 Climate and Environmental Sciences 

Critical problems in energy-related climate and environmental sciences, whether in the atmosphere, the oceans, or the 
subsurface, revolve around the mass transport and transformation of fluids (gases and liquids) and their subsidiary 
components (e.g., dissolved chemicals, aerosols, microorganisms). These processes are often mediated by mineral and/or 
biological agents (e.g., solid mineral grains and surfaces, microorganisms, plants, fungi).  

The range of scales involved in problems relevant to the climate and environmental sciences is daunting. Bacteria that 
mediate critical subsurface reactions respond to their local environment, often a single pore only a few ten of microns in 
diameter. Bulk observations that attempt to relate environmental conditions to microbial function typically average over 
millions of such pores, often rendering interpretation extremely difficult. Biogeochemical reactions, often occurring at 
solid-fluid interfaces, are often limited by the transport of aqueous substrates to the interface that is dominated by the 
relatively slow process of molecular diffusion. At the other extreme, climate sciences often model the cumulative effects 
of biogeochemical reactions in the oceans, land surface, and atmosphere at resolutions of hundreds of kilometers, scales as 
many as 40 orders of magnitude larger than the fundamental scales of the reactions (molecules, cells and grain surfaces). 
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Some of the most important scale transitions in the environmental and climate sciences include: 

• Molecules to biological cells 

• Cells to pore spaces 

• Pore spaces to effective continua (porous media) 

• Porous media to local field plots (including effects of plants and surface hydrologic processes) 

• Local field plots to watersheds 

• Watersheds to regions 

• Regions to the globe. 

Each of these scale transitions requires careful attention to the effects of reducing the resolution or fidelity of processes 
acting at smaller scales, and whether these effects can be adequately represented by upscaled (averaged) models or require 
a more sophisticated approach. Although all of these scales have relevance to BER, EMSL’s mission focus on molecular 
science directs our attention to the lower end of these scales, considering molecules to local field plots and the 
intermediate scale transitions. 

The focus of the SBR and TES programs within BER is on processes from bedrock to the top of the vegetative canopy. 
Many of these critical processes occur in porous media comprised of solid grains and pore spaces filled with various fluids 
(e.g., air, water, non-aqueous-phase liquids, methane gas). There has been strong recent interest in connecting pore-scale 
models (that explicitly simulate solid and fluid phases) with continuum-scale models, which treat the system as a 
continuous porous medium. From the standpoint of fluid flow and solute transport, pore-scale models are attractive since 
available process models (i.e., Navier-Stokes equations for flow and advection-diffusion equations for transport) can be 
considered valid in most cases of interest. Because diffusion is relatively fast at sub-pore resolution, assumptions of 
mixing inherent to most reaction models are also usually valid. At the continuum scale, however, many available process 
models require assumptions that are commonly invalidated. Therefore, connecting pore- and continuum-scale models 
offers the potential to provide a more fundamental underpinning for larger-scale simulations. Several position papers 
(Appendix C) address this issue in various ways. Scheibe points out fundamental reaction models (and associated rates) 
cannot be directly applied at continuum scales because of violated assumptions regarding reactant mixing. By coupling 
and co-evolving a pore-scale and a continuum-scale model, Tartakovsky and Scheibe (2011) demonstrated the feasibility 
of a hybrid multiscale approach to mixing-controlled reactive transport (Figure 5.3). Battiato proposes a related approach 
to simulation of changes in porous media constitutive properties (e.g., porosity, permeability) coupled to reactive 
transport. Valocchi’s position paper poses critical questions regarding the viability of hybrid multiscale for large problems 
(and possible solutions), and regarding uncertainty quantification and model verification/validation. 
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Figure 5.3  Simulation of two reacting solutes (blue, green) forming a mineral reaction product (red). Top row is a pore-scale 
simulation result at three selected times; bottom row is the result for a comparable hybrid multiscale simulation at the same three 
times. 

Many environmental chemistry applications can use high-accuracy computational chemistry methods (e.g., to accurately 
predict reaction rates and dynamics). However, these applications are often limited by short time frames over which 
simulations can be performed within reasonable wall clock time. For example, high-level ab initio MD codes, even when 
run at maximum scalability on massively parallel computing platforms, may require several months to run simulations of 
picosecond duration, which is too short to represent important chemical processes. Multiscale modeling techniques may 
be employed to increase the degree of concurrency of solutions by parallelizing in time (Bylaska et al., 2013), thus 
reducing time to solution and enabling simulation of longer time periods. 

Parallel-in-time methods (Figure 5.4) utilize a coarse-
scale propagator to establish initial conditions on sub-
periods of time, thus breaking time dependency and 
allowing independent parallel solution of the 
microscale sub-problems. Iteration between the coarse 
propagator and the microscale model is performed 
until convergence is achieved. Bylaska et al. (2013) 
demonstrated the application of parallel-in-time 
methods by using Python scripts to make calls to the 
precompiled quantum chemistry package NWChem 
(Valiev et al., 2010). For a simulation that reached its 
maximum possible speedup through standard 
parallelization of the electronic structure calculation, 

 
Figure 5.4  Schematic diagram illustrating parallel sweeps (iterations) 
where enhanced concurrency is achieved by breaking time into multiple 
sub-periods. 

Complete Pore-scale Solution 

Dimension Reduction Solution 
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they observed an additional speedup from 32 s/time step to 6.9 s/time step through parallelization in time. 

Future strategies in the environmental and climate area will build on approaches described in these examples, with an 
effort to generalize them (Scheibe et al., 2015) and enable efficient implementation on advanced computational platforms. 

5.3 Multiscale Modeling Topical Computing Capability for BER Science 

The 2014 EMSL Strategic Plan makes the following statement regarding the EMSL strategy for multiscale modeling: 

We also intend to develop new paradigms for multiscale prediction and modeling, including development of new 
computational approaches to utilize molecular-scale information in models at larger spatial and temporal scales 
through mesoscale and multiscale modeling methods. This work will emphasize development of predictive modeling 
capabilities for climate, subsurface, and biological science areas, and will support the integration of EMSL 
experimental and modeling capabilities for scientific impact. (Section 3.3 Transforming Scientific Capabilities for the 
Future) 

A critical part of this strategy is the development of a topical computing capability in multiscale modeling aimed at 
critical BER science 
targets, utilizing the 
computational facilities 
(existing and planned) at 
EMSL to support the needs 
of the BER science 
community. 
Implementation of the 
EMSL strategy, shown 
schematically in Figure 
5.5, has three primary 
elements: 

The EMSL strategy has 
three primary elements: 

1. Establish a suite of 
BER-relevant 
codes on EMSL 
high-performance 
computing 
systems (initially 
Cascade), 
including resident 
expertise for user 
support of each 
code. 

 

 
Figure 5.5  Schematic diagram of the EMSL strategy for a multiscale computing capability for BER. 
On the left are examples of “at-scale” codes commonly used in BER research; these and/or similar 
codes will be installed at EMSL with resident expertise for user support. Arrows denote multiscale 
couplings to be developed between codes at different scales using a script-based loose coupling 
approach. The right side denotes potential connections to experimental data from facilities and 
research projects ranging from molecular and subcellular to laboratory and local field scales. 
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Currently, BER investigators who want to incorporate modeling into their research scope must allocate significant 
funding and effort for code development/enhancement and installation and compilation on a host computer, and 
apply separately for a computational allocation at EMSL, NERSC, or other facility. By investing in installation, 
maintenance, and support of the most widely used BER-relevant codes (e.g., selecting from but not limited to 
those codes described in Appendix D), EMSL will provide a resource to the BER community that will encourage 
greater use of EMSL computational resources and enhance opportunities for integration with experimental 
capabilities embodied in EMSL. This element will include outreach to investigators in the BER program and other 
programs that support BER-relevant science, to attract a targeted user base to EMSL and enhance use of EMSL 
computational resources in other areas in addition to EMSL’s traditional focus on computational chemistry. 
Particular attention will be given to modifying (where appropriate) existing codes to take advantage of the hybrid 
CPU/accelerator architecture of the current EMSL supercomputer, Cascade. 

2. Develop a platform for multiscale code linkages among the user codes. 

This element is a unique aspect of the proposed topical computing resource. Whereas other computational 
facilities emphasize large-scale (i.e., petascale moving toward exascale) simulations to address selected at-scale 
problems, EMSL topical computing will emphasize integration of moderately-sized simulation capabilities across 
multiple length and time scales of interest. This will provide solutions to the fragmentation challenge called out in 
a recent DOE report on the “Virtual Laboratory”: 

“…[the] fragmentation of science, technologies, and predictive capabilities among disciplines and the focus 
on studying mostly individual, scale-based system components…leads to fundamental uncertainties about 
how coupled subsystems interact with each other and respond to environmental changes across different space 
and time scales.  The lack of sufficient science-based capabilities to predict these interactions and responses 
hinders the ability to sustainably manage and mitigate energy and environmental problems.”  (BERAC, 2013) 

This platform will initially provide tools for loose coupling of resident codes using script-based workflow tools 
similar to that described in Scheibe et al. (2014), implementing alternative multiscale coupling methods drawn 
from various multiscale modeling motifs defined in Scheibe et al. (2015). Our goal is to implement as generally as 
possible methodologies such as the Heterogeneous Multiscale Method (HMM, see E et al. 2003), using scripted 
workflows that will require limited customization for adaptation to specific application codes. In the case of 
HMM, for example, the customization will take the form of definitions of variables and variable transformations 
to be used in “lifting” and “restriction” steps of the algorithm (Figure 5.6). We envision initial efforts will focus 
on relatively small scales, starting with molecular scales central to the EMSL mission and developing linkages to 
pore and cellular scales, with eventual adaptation to larger scales of interest to BER. 

3. Construct data linkages to instruments, other user facilities, and project data. 

Integration of models and data across scales is essential for advancing predictive capability of models and 
improving fundamental process understanding. The multiscale modeling capability at EMSL will provide, as 
appropriate, linkages to available data systems such as KBase, MyEMSL, and other developing systems. These 
linkages will take the form of standardized interfaces and scripted codes to convert data between formats required 
for various modeling applications. This effort will involve coordination with developing BER plans for integrated 
data management across various research programs. 

 



 Multiscale Computation: Needs and Opportunities for BER Science 
 
 

5.9 

 

Figure 5.6  Schematic diagram of the EMSL strategy for a multiscale computing capability for BER. The left side denotes a suite of 
“at-scale” codes commonly used in BER research, to be installed and maintained at EMSL with resident expertise for user support. 
Schematic diagram of generic implementation of the Heterogeneous Multiscale Method for any pair of codes operating at different 
scales. Gray boxes denote instances of the microscale and macroscale codes; yellow boxes are user-provided templates, rules and 
functions that define information transfer between the two scales; green ovals are script elements that perform the data transfer; and 
blue boxes are script-generated input files and simulator outputs. 

5.4 First Science on Future Hardware Systems 

The EMSL computing leadership is engaging the user community to identify critical science drivers that will guide the 
architectural design for EMSL’s future supercomputing systems. This workshop represents one important form of that 
engagement. As part of the design and procurement process, EMSL has dedicated funds to implementing “First Science” 
on future systems. This is aimed at preparing key users and codes for efficient utilization of new systems as soon as they 
become available, to maximize the potential scientific impact. As an initial step, a small number of target users and their 
associated codes will be invited to participate in a working meeting early in 2015. The participants of this workshop (and 
codes identified in Appendix D) will form the primary selection pool of target users. The objective of the working 
meeting will be to obtain further details on the architectural needs of candidate codes and identify final participants for 
First Science. Participating teams will partner with EMSL scientists and computational experts to adapt and/or develop 
their codes in ways that will 1) facilitate utilization on the current system (Cascade), in particular making use of the Intel 
MIC accelerators in Cascade, and 2) prepare the codes for efficient and early use on the next-generation EMSL 
supercomputing system.
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6.0 Concluding Remarks 

The workshop on “Multiscale Computation: Needs and Opportunities for BER Science,” sponsored by EMSL and 
conducted on August 26, 2014 in Washington, DC, was a unique opportunity. The BER scientific communities met and 
discussed critical challenges in multiscale simulation that are shared across the wide range of scientific disciplines 
represented within BER programs. Participants found great value in the initial dialogue, particularly between 
computational biologists and computational environmental scientists.  

This report summarizes the discussions and outcomes of the workshop, and provides objective input that will guide EMSL 
investments in development of software tools and design of future hardware systems that will optimize their benefit to and 
impact on the EMSL user community. Several strategies were identified, together with concrete steps to implement those 
strategies. EMSL has and will continue to invest in the development of a unique multiscale computational capability, 
drawing on input from this workshop, which will meet the needs identified here and enable transformational advances in 
mechanistically-based predictive models of complex earth and biological systems. 

There is increasing need for the ‘‘virtual reality’’ provided by multiphysics and multiscale simulations to quantitatively 
match, with reasonable accuracy, what happens in the real world. Thus, even if the simulations are not perfect, we would 
like to be sure the ‘‘correct’’ answer falls reliably and predictably within some interval around the computational result. 
Achieving such reliability is critically important for consolidating the usefulness of simulation in the energy and 
environmental biosciences. Confidence that simulations provide genuine information about the system under study has 
important implications. We will need to reach a stage where if the result of a computation does not match some 
experimental measurement, then one should be able to conclude it is not the calculation, but some underlying hypothesis 
about the system that is wrong. At this point simulation will furnish the ‘predictive understanding’ required for future 
BER science.
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Appendix B 

MULTISCALE COMPUTATION: NEEDS AND OPPORTUNITIES FOR BER SCIENCE 
HOSTED BY THE ENVIRONMENTAL MOLECULAR SCIENCES LABORATORY (EMSL) 

 
AUGUST 26, 2014 

WASHINGTON, D.C. 
BATTELLE WASHINGTON OFFICE 

901 D ST. SW #900 
TEL: 202-479-0500 

 
WORKSHOP OBJECTIVES: 
 

• Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect 
molecular-scale research to BER research at larger scales. 

• Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware 
and software) architectures. 

 
AGENDA: 
 
8:30 am  Welcome and Logistics  ....................................................................... Tim Scheibea / Jeremy Smithb 
 aEMSL Lead Scientist, Multiscale Modeling and High-Performance Computing 
 bDirector, UT/ORNL Center for Molecular Biophysics 
 
8:45 am  Role of Scientific Simulation in BER’s Research Strategy  ........................................... Paul Bayer 
 DOE Program Manager for EMSL 
 
9:00 am  Science Challenges in Multiscale Simulation for  
                  Biological and Environmental Research  .........................................Tim Scheibe / Jeremy Smith 
 
9:30 am  Charge Instructions for Breakout Session One and Transition Time / Break   
 
10:00 am Breakout Session One – Components of a BER Multiscale Simulation Framework 
 
12:00  Lunch – Food Court (No Host) 
  
1:00 pm Report Back – Breakout Session One 
  
1:30 pm Charge Instructions for Breakout Session Two and Transition Time / Break 
 
2:00 pm Breakout Session Two – Computational and Data Needs 
 
4:00 pm Report Back – Breakout Session Two 
 
4:30 pm Group Discussion and Closing Remarks 
 
5:00 pm Adjourn





 Multiscale Computation: Needs and Opportunities for BER Science 
 

 

Appendix C Position Papers 
 





 Multiscale Computation: Needs and Opportunities for BER Science 
 

C.1 

Appendix C 

Battiato, Ilenia (San Diego State University): Adaptive stochastic hybrid modeling of highly reactive fronts in 
subsurface geologic systems. 

Brodie, Eoin (Lawrence Berkeley National Laboratory): Maximizing new information on microbial function to 
produce a more accurate and dynamic representation of microbial processes in biogeochemical models. 

Cannon, Bill (Pacific Northwest National Laboratory): Simulating microbial metabolism with statistical 
thermodynamics. 

Cardon, Zoe (Marine Biological Laboratory): 3-D reality check: Data mining with structural support. 

Kang, Qinjun (Los Alamos National Laboratory): Multiscale simulation of reactive transport in porous media. 

Li, Li (Penn State University): Understanding cross-scale behavior. 

Ortoleva, Peter (Indiana University): Multiscale theory and computation for microbes and nanomaterials. 

Roberts, Elijah (Johns Hopkins University): Multiscale modeling of reaction-diffusion and cytoskeletal dynamics 
during gradient signaling. 

Scheibe, Tim (Pacific Northwest National Laboratory): Hybrid multiscale simulation of mixing-controlled 
biogeochemical reactions. 

Smith, Jeremy (Oak Ridge National Laboratory): Multiscale biological computer simulation at ORNL. 

Valocchi, Al (University of Illinois): Concurrent hybrid multiscale methods for reactive transport in porous media: Some 
challenges. 

Voit, Eberhard (Georgia Institute of Technology): Of mice and men… and microbes. 

Voth, Gregory (The University of Chicago): (Untitled). 

 

 

 





 “Adaptive stochastic hybrid modeling of highly reactive fronts in subsurface geologic systems” 
Ilenia Battiato 

San Diego State University 
 
 

Motivation:	  Ultra-‐long	  time	  predictions	  of	  transport	  of	  highly	  reactive	  fluids	  in	  the	  subsurface	  
challenge	  our	  current	  modeling	  efforts,	  and	  their	  uncertainty	  undermines	  our	  ability	  to	  predict	  
the	  future	  impact	  of,	  and	  the	  risks	  associated	  to,	  anthropogenic	  injection	  and	  storage	  of	  CO2	  and	  
nuclear	  wastes.	  We	  propose	   to	   develop	  an	   organizing	   framework	   (Fig.	   1)	   to	   describe	   nonlinear	  
reactive	   transport	   in	   geologic	   systems	   over	   many	   length	   and	   time	   scales,	   and	   corresponding	  
physics-‐based	   adaptive	  multi-‐scale	   hybrid	  models.	  We	  will	   also	   provide	   computational	   tools	   for	  
robust	  uncertainty	  quantification	  in	  hybrid	  simulations.	  Our	  theoretical	  and	  computational	  models	  
will	   be	   grounded	   on	   laboratory	   experiments.	   Since	   our	   physical	   understanding	   of	   processes	   is	  
scale-‐dependent	   through	   the	   models	   we	   employ	   to	   decipher	   and	   interpret	   reality	   (and	  
measurements)	   at	   a	   particular	   (observation)	   scale,	   such	   a	   theoretical	   and	   computational	  
framework	  is	  needed	  i)	  to	  control	  modeling	  errors	  in	  inherently	  multi-‐scale	  geological	  systems	  
and	   ii)	   to	   improve	  our	  predictive	   capabilities.	  Both	  grand	  challenges	  are	   relevant	   to	  DOE	  and	  
office	  of	  Science	  missions.	  

	  

	  
Fig.	   1:	   Conceptualization	   of	   the	   connection	   between	  development	   and	  deployment	   of	   physics-‐
based	   multi-‐scale	   models.	   The	   missing	   link	   between	   model	   development	   and	   deployment	   is	  
generally	   the	   identification	   of	   diagnosis	   criteria	   to	   identify	   suitable	   models	   and	   suitable	  
modeling	  scales	  at	  which	  continuum-‐scale	  quantities	  and	  parameters	  are	  well	  defined.	  (Battiato	  
I.,	  2013	  DOE	  Young	  Investigator	  Proposal)	  
	  
	  
Challenge:	  	  Subsurface	  flow	  and	  transport	  pervasively	  exhibit	  non-‐linear	  dynamics	  and	  lack	  of	  
(temporal	  and	  spatial)	  separation	  of	  scales,	  i.e.	  physical	  and	  bio-‐geochemical	  phenomena	  on	  one	  
scale	  (e.g.,	  a	  pore	  scale)	  affect,	  and	  are	  coupled	  to,	  phenomena	  on	  a	  vastly	  different	  scale	  (e.g.,	  a	  
field	  scale).	  For	  example,	  pore-‐scale	  molecular	  diffusion	  fundamentally	  affects	  field-‐scale	  mixing	  
of	   (bio)chemically	   reacting	   solutes,	   and	   differential	   dissolution	   of	   rock	   minerals	   (over	   time	  
scales	   spanning	  many	   orders	   of	  magnitude)	   can	   lead	   to	   drastic	   permeability	   changes	   due	   to	  
granular	   coating	  development,	   successive	   liquefaction	   	   and	   jamming	  at	  pore/fracture	   throats.	  
Common	  features	  of	  such	  subsurface	  phenomena	  are	  their	  high	  localization	  (e.g.,	  propagation	  of	  
reactive	   fronts	   and	   biofilm	   growth)	   and/or	   strong	   nonlinear	   coupling	   between	   the	   processes	  
involved	   (e.g.,	   dynamic	   changes	   in	   porosity	   and	   permeability	   due	   to	   dissolution	   or	  
precipitation).	  Current	  modeling	  approaches	   can	  be	   subdivided	   into	  Darcy-‐scale	   (continuum),	  
pore-‐scale,	   and	   multi-‐scale	   models.	   The	   theoretical	   validity,	   and	   predictive	   power,	   of	   Darcy-‐
scale	   (one-‐point	   closure)	   formulations	   totter,	   when	   confronted	   with	   these	   highly	   coupled,	  
nonlinear	   systems.	   	   Fine-‐scale	   models	   (e.g.,	   Lattice-‐Boltzmann	   or	   Navier-‐Stokes	   equations),	  



which	   describe	   these	   phenomena	   with	   a	   high	   degree	   of	   fidelity,	   do	   not	   represent	   a	   viable	  
alternative,	  as	  they	  are	  computationally	  prohibitive	  and	  impractical	  on	  the	  field	  scale.	  Current	  
multi-‐scale	  models	  share	  many	  of	  the	  limitations	  of	  continuum-‐scale	  representations	  as	  they	  are	  
often	  based	  on	  empirical	  closures,	  upscaling	  methods	  and/or	  assumed	  macroscopic	  behavior	  of	  
microscopic	  variables.	  Additionally,	  there	  exist	  no	  adaptive	  criteria	  either	  to	  determine	  a	  priori	  
the	   error	   associated	   to	   a	   specific	   (continuum-‐,	   multi-‐scale)	   model,	   or	   to	   select	   the	   optimal	  
representation	   scale	   in	   terms	   of	   accuracy	   and	   computational	   burden.	   Further,	   structural	   and	  
parametric	   uncertainty	   call	   for	   quantification	   of	   predictive	   uncertainty	   of	   multi-‐algorithm	  
approaches.	  

	  
Approach:	   The	   primary	   objective	   of	   the	   proposed	   research	   is	   to	   provide	   a	   framework	   to	  
modeling	   multi-‐scale	   coupled	   non-‐linear	   reactive	   transport	   in	   geologic	   systems	   through	   the	  
development	   of	   an	   upscaling	   framework	   where	   stochastic	   hybrid	   models	   are	   employed	  
adaptively.	  While	  a	  priori	  suitable	  to	  many	  physical	  systems,	  we	  will	  apply	  such	  a	  framework	  
to	   abrupt	   permeability	   changes	   in	   carbonate	   rocks	   formations	   due	   anthropogenic	  
injection	  of	  highly	  reactive	  fluids.	  

Permeability	  and	  porosity	  changes	  in	  carbonate	  rocks	  (e.g.,	  argillaceous	  limestone)	  due	  
to	  injection	  of	  acidic	  waters	  are	  determined	  by	  a	  complex	  interplay	  between	  flow	  and	  nonlinear	  
transport	  processes.	  Abrupt	  permeability/porosity	  changes	  due	  to	  dissolution	  and/or	  clogging	  
represent	  an	  outstanding	  example	  of	  tipping	  point	  events,	  where	  the	  system	  state	  can	  undergo	  a	  
‘sudden’	   transition	   (compared	   to	   the	   temporal	   scales	   of	   the	   transport	   processes	   involved)	  
driven	   by	   temporally	   and	   spatially	   localized	   impulses	   (fluctuations).	   Some	   additional	  
challenging	  features	  of	  these	  systems	  are:	   i)	  nonlinear	  coupling	  between	  scales,	   ii)	  strong	  out-‐
of-‐equilibrium	   dynamics	   under	   anthropogenic	   loading,	   iii)	   time-‐	   and	   spatial-‐scales	   spanning	  
many	   orders	   of	   magnitude,	   iv)	   heterogeneity	   at	   different	   scales,	   v)	   system	   sensitivity	   to	  
fluctuations,	   vi)	   long	   range	   interactions	   (e.g.	   force	   networks	   in	   clay	   particles	   coating).	   The	  
former	   characteristics	   make	   this	   physical	   phenomenon	   highly	   suitable	   to	   stochastic	   hybrid	  
approaches.	  	  
	  

The	  proposed	  approach	  consists	  of	  the	  following	  steps:	  
1. We	  will	  develop	  a	   generalized	  multi-‐scale	   theoretical	   framework	   for	  non-‐linear	  multi-‐

component	   reactive	   transport	   based	   on	   spatial	   and	   temporal	   homogenization	   of	  
dimensionless	   (fine-‐scale)	   equations.	   The	   temporal	   homogenization	   allows	   one	   to	  
include	  explicitly	  the	  effect	  of	  temporal	  fluctuations	  of,	  e.g.,	  driving	  forces	  and	  boundary	  
conditions.	   This	   formulation,	   in	   its	   unclosed	   form,	   a	   priori	   will	   account	   for	   a	   lack	   of	  
(temporal	  and	  spatial)	  scale	  separation,	  and	  will	  explicitly	  depend	  upon	  dimensionless	  
(e.g.,	   Peclét	   and	   Damköhler)	   numbers,	   which	   describe	   the	   dynamics	   of	   the	   physical	  
system	  under	  consideration.	  The	  degree	  of	  coupling	  between	  scales	  can	  be	  represented	  
in	   a	   phase	   diagram	   in	   terms	   of	   the	   adimensional	   quantities	   previously	   identified.	  
Evaluating	  the	  order	  of	  magnitude	  of	  such	  parameters	  in	  the	  ‘real’	  system	  provides	  one	  
with	  a	  quantitative	  estimate	  of	  the	  degree	  of	  coupling	  between	  its	  characteristic	  scales.	  	  
When	   scales	   are	   not	   fully	   coupled,	   this	   leads	   to	   a	   simplification	   of	   the	   original	  
formulation	  through	  the	  choice	  of	  the	  most	  appropriate	  closure	  scheme.	  In	  this	  case,	  the	  
closed	   equation	   resulting	   from	   the	   previous	   homogenization	   step	  may	   be	   used	   as	   the	  
new	  fine-‐scale	  model	  in	  the	  following	  upscaling	  step.	  This	  procedure	  guarantees	  that	  the	  
coarser	  scale	  model	  is	  employed,	  wherever	  and	  whenever	  possible.	  If,	  on	  the	  other	  hand,	  
there	  is	  no	  separation	  of	  scales,	  coupling	  conditions	  must	  be	  formulated.	  

2. We	  will	  develop	  hybrid	  formulations	  for	  systems	  with	  different	  degrees	  of	  coupling.	  We	  
will	  combine	  continuum-‐scale	  with	  fine-‐scale	  models	  to	  describe	  the	  dynamics	  of	  highly	  
correlated	  systems.	  For	  example,	  we	  will	  employ	  (fine-‐scale)	  force-‐network	  models	  and	  
pdf	   methods	   to	   determine	   the	   probability	   of	   rupture	   of	   granular	   clay	   coating	   under	  
hydrodynamic	  shear.	  

3. We	  will	  develop	  diagnosis	   criteria	   for	  algorithm	  refinement.	   	  The	  criteria	   for	  adaptive	  
spatial	   and	   temporal	   hybridization	   will	   be	   formulated	   in	   terms	   of	   coarse-‐scale	  



functionals,	   e.g.	   space-‐time	   dependent	   dimensionless	   numbers.	   The	   spatio-‐temporal	  
evolution	  of	  appropriately	  defined	  adimensional	  quantities	  will	   identify	  an	  orbit	   in	  the	  
phase-‐diagram.	  Each	  point	  of	  the	  orbit	  will	  be	  characterized	  by	  a	  given	  degree	  of	  scale	  
coupling/separation.	   This	   information	   will	   be	   used	   to	   select	   the	   most	   appropriate	  
hybrid	  scheme	  at	  any	  fixed	  instance	  in	  time	  and	  space.	  

4. We	   will	   generalize	   our	   former	   approaches	   to	   fine-‐scale	   (deterministic)	   equations	   in	  
random	  domains	  to	  account	  for	  unknown	  pore	  geometry.	  This	  approach	  will	  lead	  to	  an	  
equivalent	   formulation	   in	   terms	   of	   fine-‐scale	   stochastic	   equations	   in	   deterministic	  
domains.	  Finally,	  the	  hybrid	  coupling	  will	  be	  generalized	  to	  stochastic	  PDEs	  of	  nonlinear	  
reactive	  transport,	  and	  will	  allow	  one	  to	  propagate	  parametric	  uncertainty	  of	  fine-‐scale	  
quantities	  (e.g.	  geometry)	  through	  a	  modeling	  process.	  	  

The	   proposed	   research	   would	   develop:	   1)	   a	   framework	   to	   describe	   nonlinear	   reactive	  
transport	   in	   geologic	   systems	   over	  many	   length	   and	   time	   scales,	   and	   corresponding	   physics-‐
based	   adaptive	  multi-‐scale	   hybrid	  models,	   with	   specific	   application	   to	   permeability/porosity	  
changes	   in	   fractured	   and	   porous	   rocks,	   and	   2)	   methods	   to	   propagate	   uncertainty	   between	  
scales.	   	  Both	  outcomes	  have	  a	  strong	  transformational	  potential	   in	  modeling	  of	  geological	   (or,	  
more	   generally,	   physical)	   nonlinear	   systems,	   which	   lack,	   completely	   or	   partially,	   scale	  
separation.	  Such	  organizing	  framework	  would	  also	  lay	  a	  solid	  basis	  for	  quantitative	  risk	  analysis	  
of	  anthropogenic	  injection	  and	  storage	  of	  highly	  reactive	  substances.	  





Position	  Paper	  for	  “Multiscale	  Computation:	  Needs	  and	  Opportunities	  for	  BER	  Science”	  	  
	  
Maximizing	  new	  information	  on	  microbial	  function	  to	  produce	  a	  more	  accurate	  and	  
dynamic	  representation	  of	  microbial	  processes	  in	  biogeochemical	  models	  
	  
Eoin	  Brodie	  –	  Lawrence	  Berkeley	  National	  Laboratory	  
	  
	  
Motivation	  
Our	  understanding	  of	  the	  extent	  of	  microbial	  diversity	  and	  function	  in	  natural	  systems	  
has	  been	  transformed	  through	  the	  use	  of	  new	  genomic	  and	  computational	  approaches.	  
From	  metagenomic	  datasets,	  terabases	  
(and	  terabytes)	  of	  sequence	  information	  
are	  becoming	  routine,	  and	  their	  
reconstruction	  into	  complete	  genomes	  is	  
accelerating.	  These	  genomes	  bear	  the	  
signatures	  of	  environmental	  selection,	  the	  
imprint	  of	  historical	  conditions	  within	  a	  
biome,	  effectively	  turning	  the	  microbial	  
community	  into	  a	  network	  of	  sensors	  with	  
a	  memory	  for	  past	  conditions,	  deployed	  
at	  the	  pore	  scale.	  This	  microbial	  dark	  
matter	  is	  gradually	  being	  illuminated,	  
revealing	  metabolic	  potential	  that	  has	  yet	  to	  be	  cultivated	  and	  studied	  in	  the	  laboratory	  
much	  less	  considered	  in	  biogeochemical	  models.	  
	  
Challenge	  
How	  do	  we	  move	  forward,	  assimilating	  and	  condensing	  this	  information	  such	  that	  it	  can	  
be	  used	  to	  inform	  biogeochemical	  reaction	  networks	  and	  constrain	  parameter	  values?	  
Can	  we	  reduce	  a	  complex	  network	  of	  biochemical	  reactions	  within	  a	  microbial	  cell	  to	  a	  
few	  key	  functions/traits	  that	  determine	  its	  fitness,	  can	  we	  reduce	  organisms	  with	  similar	  
functions/trait	  space	  to	  ‘guilds’	  and	  should	  we	  associate	  guild	  members	  with	  specific	  
reactions	  within	  our	  biogeochemical	  reaction	  networks?	  Can	  we	  make	  generalizations	  
that	  can	  be	  applied	  beyond	  the	  systems	  where	  we	  have	  such	  data,	  and	  when	  and	  where	  
is	  this	  information	  useful	  and	  how	  much	  of	  it	  do	  we	  really	  need?	  
	  
Approach	  
To	  answer	  these	  questions	  requires	  that	  we	  begin	  to	  incorporate	  biological	  complexity	  
into	  models	  that	  represent	  life	  at	  the	  microbial	  (pore)	  scale.	  Reactive	  transport	  models	  
offer	  an	  attractive	  solution	  with	  flow	  and	  transport	  constraints	  regulating	  the	  supply	  of	  
substrates	  to	  microbes	  where	  reactions	  are	  represented	  by	  a	  Michaelis-‐Menten	  type	  
function	  with	  a	  thermodynamic	  driver	  (e.g.	  CrunchFlow;	  Steefel,	  2009).	  By	  sequencing	  
metagenomes	  from	  a	  series	  of	  samples	  taken	  over	  what	  we	  consider	  to	  be	  
biogeochemically	  relevant	  locations	  or	  times	  in	  the	  system	  of	  interest,	  we	  can	  assemble	  

	  
Fig.	  1.	  Trait-‐based	  models	  of	  microbial	  function	  
informed	  by	  genomics	  with	  emergent	  
populations	  resulting	  in	  dynamic	  reaction	  rates.	  



genomes	  (using	  genome	  properties	  and	  abundance	  profiles)	  (Handley	  et	  al.,	  2013;	  
Kantor	  et	  al.,	  2013)	  and	  with	  well-‐curated	  databases	  of	  key	  functional	  genes/pathways	  
we	  can	  ascribe	  a	  functional	  role	  to	  those	  genomes	  (e.g.	  ggkbase.berkeley.edu).	  We	  can	  
possibly	  go	  further	  a	  derive	  proxies	  for	  kinetic	  parameters,	  estimating	  theoretical	  
maximum	  growth	  rate	  (Vieira-‐Silva	  &	  Rocha,	  2010)	  and	  optimal	  growth	  temperatures	  
(Zeldovich	  et	  al.	  2007),	  all	  without	  growing	  any	  organisms	  in	  the	  laboratory.	  If	  suitably	  
validated	  this	  approach	  would	  replace	  the	  current	  practice	  of	  using	  literature	  
parameters	  derived	  under	  irrelevant	  conditions	  for	  irrelevant	  organisms,	  with	  
ecosystem	  specific	  information	  or	  a	  solid	  basis	  with	  which	  to	  derive	  meaningful	  
distributions	  of	  parameters	  with	  some	  relationship	  to	  important	  drivers.	  
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Simulating Microbial Metabolism with Statistical Thermodynamics 

Motivation. Ideally, models of metabolism should predict metabolite levels, characterize the 
thermodynamic requirements of pathways and processes, be testable with experimental data, and 
provide physical insight into the principles of emergence of cellular function and self-organization. 
Simulations based on the law of mass action, such as kinetic simulations, can in principle meet these 
requirements. However, these simulations require knowledge of the thousands of rate constants involved 
in the reactions. The measurement of rate constants is very labor intensive, and hence rate constants for 
most enzymatic reactions are not available. Moreover, the same prima facie enzymes (ortholog) from 
different species, or even different strains, can have vastly different rate constants. If one were to model 
the metabolism of an organism using kinetic simulations, the rate constants for each enzyme would first 
need to be measured. This is an overwhelming task that is not likely to be accomplished for any single 
organism in the near or distant future. 

Challenge. The challenge is to model coupled reactions on a large-scale using methods that do not 
ignore the physics of the system. Without modeling the physics of the system, the emergence of function 
and self-organization can only be fit to data and not understood from principles. Such fitting does not 
allow for prediction of new properties or function, and does not provide insight necessary for design of 
new functionality. 
Approach. Instead of setting rate constants and sampling for steady-state concentrations and fluxes, we 
set chemical potentials and sample for rates, fluxes and concentrations. Statistical thermodynamics 
provides us with much of the mathematical framework to accomplish this, with the exception of the 
ability to model time-dependent non-equilibrium processes [1, 2]. However, development of fluctuation 
theories over the past 20 years are promising and in many cases, accurately allow us to model the time-
dependence of coupled reactions across large time scales with the same accuracy as mass action-based 
kinetic simulations. 

Figure	  1.	  (Left)	  Free	  energy	  profile	  determined	  from	  metabolomics	  data	  and	  statistical	  
thermodynamics	  simulations.	  (Right)	  Free	  energy	  profiles	  of	  E.	  coli,	  a	  cyanobacterim	  and	  a	  green	  
sulfur	  bacterium	  under	  similar	  conditions. 

 

	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  



Recent Results. 
We have recently published an outline of the statistics of modeling coupled reactions from a stochastic 
thermodynamic perspective [1]. The	  principles	  of	  the	  approach	  were	  demonstrated	  using	  a	  simple	  
set	  of	  coupled	  reactions,	  and	  then	  the	  system	  was	  characterized	  with	  respect	  to	  the	  changes	  in	  
energy,	  entropy,	  free	  energy,	  and	  entropy	  production.	  Finally,	  the	  physical	  and	  biochemical	  
insights	  that	  this	  approach	  provides	  for	  metabolism	  was	  demonstrated	  by	  application	  to	  the	  
tricarboxylic	  acid	  (TCA)	  cycle	  of	  Escherichia	  coli.	   

The	  use	  of	  the	  chemical	  potential	  in	  modeling	  metabolic	  reactions	  provides	  a	  natural	  integration	  
platform	  for	  experimental	  metabolomics	  data.	  The	  assumption	  inherent	  in	  the	  use	  of	  the	  standard	  
chemical	  potential	  for	  modeling	  reactions	  is	  that	  each	  change	  of	  state	  occurs	  with	  a	  frequency	  
proportional	  to	  the	  thermodynamic	  driving	  force	  for	  the	  respective	  reaction.	  	  In	  regions	  of	  state	  
space	  where	  the	  system	  responds	  linearly,	  this	  is	  an	  excellent	  assumption.	  We	  have	  found	  that	  
80%	  of	  the	  possible	  state	  space	  can	  be	  modeled	  in	  this	  way.	  	  
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Figure	  2	  Comparison	  of	  simulation	  trajectories	  from	  a	  stochastic	  kinetic	  simulation	  and	  a	  
stochastic	  thermodynamic	  simulation	  using	  fluctuation	  theory.	  



3D Reality Check:  Data Mining with Structural Support 
Zoe G. Cardon, Marine Biological Laboratory, Woods Hole, MA 
THE CHALLENGE: The microbial activities on which humanity and ecosystems depend are determined by 
both microbial community membership and the resources and conditions in the microbes’ local 
environments. In order to effectively mine “omics” (metatranscriptomic, metagenomic, proteomic, and 
amplicon-based membership) datasets for insight into controls over microbial community structure and 
function, a pervasive disconnect must be addressed: The length of a typical bacterium is approximately 
one micrometer, yet environmental sampling meant to provide contextual insight into environmental 
conditions surrounding, and resources available to, microbial communities is often (by necessity) carried 
out at much larger scales. “Metadata” (pH, nutrient concentrations, salinity, availability of organic matter 
etc.) are measured from liters of well-mixed seawater, or from homogenized, coffee-mug-size cores of 
sediment or soil. From such sampling, it is impossible to infer the localized, heterogeneous, micron-scale 
environmental conditions the microbes are actually reacting to, and influencing, at the time of sampling. 

The importance of 3D microheterogeneity for microbial life is not restricted to particular 
environments. Many bacteria in open oceans, nearly all in estuaries, and microbes in sediments and soils 
are associated with particles, whether on or in marine snow, organic matter, or inorganic substrate. Even 
in open oceans, free-living microbes in water can not be considered to be surrounded by a well-mixed, 
homogeneous, aqueous environment; plumes of resources appear and disappear as particles pass and 
solutes diffuse. Though  many computational approaches in use today aim to discern key environmental 
conditions associated with particular microbial processes or community structure, they do so by 
developing extensive correlation networks among environmental variables (measured from homogenized 
large samples) and the gene expression or community patterns (produced from millions of individual 
microbes each sensing its actual local environment). Gene expression or community patterns that don’t 
correlate strongly with the large-scale contextual data are ignored as noise (e.g. how could strictly aerobic 
processes be occurring in an anaerobic, saturated sediment?). But, the diversity of process and 
membership in “omic” datasets is itself information, information that can and should be mined for insight 
into how microenvironmental heterogeneity enables functional and community microbial diversity on 
Earth. This insight is essential if we are to use existing “omics” datasets for scaling up from e.g. genome-
scale metabolic models or gene regulatory network structure and function (in well-defined communities), 
or thermodynamic predictions of likely biogeochemistries (in extremely diverse environmental microbial 
samples), to understand controls over, and predict, larger-scale processes of interest  in bioremediation, 
food and fuel production, and decomposition and nutrient cycling across ecosystems. 
Goals: The basic mis-match in scales of contextual environmental sampling and microbial response 
hinders maximization of information gained from existing “omics” data. We will tackle this problem by:  

• developing a computational framework that explicitly embeds microbial communities within high   
    resolution 3D microenvironmental structure (see page 2); 

• predicting diagnostic “fingerprints” of the resulting small-scale heterogeneity in function and niche 
  expected to appear in “omics” datasets,  e.g. caused by diffusion limitations, fluid flow patterns, and/or   
  abiotic and biotic reactions within the 3D microstructure; 

• examining our and others’ existing “omics” datasets for such fingerprints, first targeting sets from 
   environments with highly contrasting structure, and exploring patterns inexplicable based on associated 
   large-scale metadata (e.g. simultaneous aerobic and anaerobic processes; operation of multiple nitrate 
   reduction pathways though one appears thermodynamically favored based on large-scale metadata); 

• predicting the larger-scale manifestation of the millions of small-scale processes operating  
   simultaneously. This larger-scale manifestation would represent the process rate measured from e.g.  
   contaminated soil, or a bottle of ocean water, or a reactor to cleanse water of pollutant nitrate. 

FUTURE RESEARCH DIRECTION: Our development of a new computational framework embedding  
diverse microbial communities within high resolution 3D structure requires melding two existing models.  
(1)  Scheibe and colleagues (e.g. Tartakovsky et al., 2013, Advances in Water Resources 59:256) have 
developed a 3D modeling framework capturing pore-scale environmental heterogeneity in a saturated or 
unsaturated volume structured by particles. They use the Smoothed Particle Hydrodynamics numerical 



method to simulate fluid flow (Navier-Stokes equations), solute transport (advection and diffusion), and 
biotic and abiotic reactions. Pore geometry is specified randomly or from known 3D structure. Scheibe is 
located at the Environmental Molecular Sciences Laboratory, which makes available to outside scientists 
the programming expertise and supercomputer access necessary for computationally-intensive projects 
such as ours. For example, Scheibe and colleagues have folded a genome-scale metabolic network for the 
well-characterized bacterium Geobacter (Tartakovsky et al. 2013) into the 3D framework, to explore how 
microheterogeneity of conditions caused by 3D physical structure, and influenced by microbial activity 
embedded in that structure, affects Geobacter’s ability to reduce contaminant uranium in groundwater.  
They showed that an assumption of homogeneous resources and conditions for all microbes (i.e. 
equivalent to gleaning contextual environmental information from large, mixed samples) overpredicted 
reduction rates, compared to the more realistic case with microbes embedded in the 3D matrix.  
(2)  In most environmental communities, however, community membership and processes of interest 
are not dominated by one or just a few well-characterized, sequenced microbes. A complementary method 
is needed to predict localized microbial function, one that does not require genome-scale networks for 
every microbe present.  Vallino and colleagues (e.g. Vallino, 2010, Phil. Trans. R. Soc. B 365:1417; 
Algar and Vallino, 2014, Aquatic Microbial Ecology, 71:223 ) provide a promising thermodynamically-
based framework. Though transformations of environmental compounds are orchestrated by microbes 
housing complex intracellular networks, a distributed metabolic network, based on extracellular 
metabolites in the microbes’ environment, can be substituted as a first order approximation. Vallino’s 
approach is different from optimization of selected, individual metabolic reactions at each point in space 
and time, as currently implemented by Gawande in Scheibe’s framework (in prep); it instead optimizes 
energy dissipation through multiple pathways  over the entire time frame of interest. Vallino et al.’s 
distributed metabolic network will be folded  into Scheibe’s 3D pore-scale model, capturing biotic-abiotic 
functional interconnections and microenvironmental diversity over time, in 3D space. The new frame-
work underlies goals for “omics” predictions, dataset exploration, and system implications noted pg 1.  

Payoff for data-mining within existing and future datasets: Development of this quantitative, broadly-
applicable framework enables a new kind of data-mining within environmental “omics” datasets, mining 
that not only recognizes the biotic detail available for perusal (curious community structures, unusual 
genes, or novel genome-scale regulatory networks, e.g. Konstantinidis et al., 2009, PNAS  106:15909), 
but also recognizes the “omics” biotic information as a signal resulting from structured interaction 
between the microbiotic and the abiotic at microscales. Recognizing this interaction, and its potential 
implications at larger scales, will support greater understanding of how the remarkable microbial 
functional and community diversity in natural ecosystems persist, and how essential ecosystem functions, 
and applied microbial processes important for humanity, are sustained.  
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Multiscale Simulation of Reactive Transport in Porous Media 

Motivation 
Multiphase flow and reactive transport processes in natural and man-made porous media are ubiquitous in 
Earth and energy systems. Examples include development of petroleum and geothermal reservoirs, 
geological storage of carbon dioxide and nuclear wastes, fate and transport of underground contaminants, 
fuel cells and batteries3, fixed/fluidized bed reactors4, and micro power plants. In these systems, although 
the key processes of fluid mobility and associated physical, chemical, and biological processes are 
ultimately governed by pore-scale interfacial phenomena, it is virtually impossible to solve the pore-scale 
processes over any desired macro length scales because of the wide disparity in scales ranging from pore 
and molecular to field. Consequently, a continuum formulation of reactive flow relying on averaging 
system properties over a representative elementary volume (REV) has been generally employed. The 
unresolved pore-scale phenomena, together with the empirical constitutive parameters, will likely lead to 
significant uncertainties and deviations in reactive transport modeling at the larger scale1. For example, 
the scaling effect may be a significant cause of the discrepancy between lab-measured and field-derived 
rate constants. Therefore, to better predict reactive transport processes in porous media and to reduce 
uncertainties in numerical modeling at scales of interest, it is imperative to greatly enhance our 
understanding and capability to simulate multiphase flow, advection, diffusion, and reaction processes at 
the pore-scale, and to develop the ability to incorporate these processes in the continuum scale5.  
 
Challenge 
In the past years, reactive transport processes at the pore scale involving strongly coupled flow, transport, 
and precipitation/dissolution reactions in realistic geochemical systems have been explicitly included in 
numerical models6-10. These studies have provided the basis for significantly improved understanding of 
reactive transport in porous media at the pore scale. However, it remains challenging to directly use the 
pore-scale results to improve 
quantitative predictions based on 
large-scale simulations for all but 
the most simplified systems.  This 
is due to a lack of fundamental 
understanding of the impact of 
pore-scale phenomena at the 
continuum scale and direct 
integration across scales in the 
simulations. Multiscale capabilities 
are essential for numerical models 
to accurately predict multiscale 
processes and multiscale 
heterogeneities in geological 
systems. Yet the effectiveness and 
limitations of existing multi-scale 
modeling approaches have not 
been rigorously evaluated. 
 
Approach 
In cases where the systems are not far from 
equilibrium so that the nonlinear effects are 
negligible, and  various length scales are sufficiently different for processes at two or more consecutive 
scales to be separable, a dual (Fig. 1) or multiple continuum approach1, 11, 12 can be used to more 
accurately model the impact of sub-grid scale variability for reactive multiphase flow and transport. In 
this approach, the pore fluid is partitioned into flowing and stagnant domains. This approach has been 

Fig. 1: Comparison of concentration distribution for 
upscaled LBM and various continuum model simulations of 
reactive transport in a structured medium1. 



 
 

used to model chemical processes in soils and fractured media. Some success with multi-rate models has 
been achieved at the Hanford 300 Area site for modeling leaching of uranium from Hanford sediments. In 
many cases, however, there are no clear distinctions among length scales, and the reaction terms are 
generally nonlinear. For these cases, the hybrid multiscale approach combining a pore-scale model in a 
small fraction of the overall domain and a continuum-scale model that solves Darcy-scale governing 
equations at the REV scale over the remainder of the domain can be used2 (Fig. 2). 
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Fig. 2: Hybrid model simulation for flow across a fracture in a fractured medium. Top: simulation domain 
consisting of continuum and pore-scale subdomains; Bottom: velocity field, with a single value for each 
continuum cell and well-resolved flow within the pore-scale region2.  

http://pore-scale.emsl.pnl.gov/
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Understanding cross-scale behavior 
 

RTM has been extensively used in the past 3 decades to understand complex subsurface 

processes in many applications. Up until now most applications have focused on processes at 

spatial scales ranging from single pore or single cell scale (microns, tens of microns) to field 

scale (10s of meter) (Li et al., 2011), with a few exception at the watershed or catchment scale 

(100s meter) (Maher and Chamberlain, 2014). With recent advances in microbial techniques, 

there is a need to develop models that describe processes at scales within individual cells to 

understand controls of microbial community structure and their response to changing 

biogeochemical conditions.  

 On the other hand, with the recent emphasis in climate change, there is a significant need 

to develop models at the watershed, continent, and global scales to understand and quantify the 

contribution of subsurface processes to global processes such as elemental cycling (C or N). 

Subsurface processes have in general been ignored in existing models that describe large-scale 

carbon processes (De Kauwe et al., 2014; Walker et al., 2014). Models that couple subsurface 

processes with surface hydrology, land surface interactions, meteorological and climatic 

processes are essentially lacking, although vigorous interests have developed in recent years.  

In my opinion, downscaling to smaller scales with finer details or upscaling to larger 

scale with much larger spatial domain is not merely a matter of increasing computational cost. It 

is a matter of developing conceptual models that can adequately capture the dominant processes 

at the scales of interest. When downscaling, we inevitably need to know more details, while 

upscaling means inevitably ignoring some finer scales details. Mechanistic understanding and 

conceptual models that can describe data and phenomena at the scale of interests require 

understanding of cross-scale behavior.   

With a few exceptions (Bao et al., 2014; Battiato et al., 2009; Battiato et al., 2011), most 

existing work using RTM have focused on individual scales without linking processes and 

phenomena across scales. As an example, the following upscaling question has remained largely 

unanswered: 

 How does scale transition occur? What fine scale processes and parameters are 

essentially in representing large scale phenomena? 

For example, for carbon decomposition at the watershed scale, the following upscaling question 

is relevant:  

 What are the key controls at finer scales that need to be carried over to represent 

soil carbon decomposition at the watershed scale? What is the form of the 

governing equation?  
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Multiscale Theory and Computation for Microbes and Nanomaterials  
 
Motivation 
Nanoscale materials self-assemble or undergo structural transformation in response to changes 
in their environments. These systems have distinguished strength, electronic, or chemical 
properties that make them of interest for materials engineering, energy conversion and storage, 
medical, and environmental applications. Since these systems typically involve millions of atoms 
and evolve via processes occurring on a broad range of scales in length and time, multiscale 
methods are needed to understand them and achieve the goal of computer-aided design. 
Responses to their microenvironments are driven by structural and chemical processes.  

Challenge 
Theoretical and computational approaches are developed to simulate these systems with 
atomic accuracy over long times. To enhance the reliability of multiscale modeling, a goal is to 
develop approaches that involve a minimal of phenomenology. Specifically, a supramillion atom 
system is simulated using only the interatomic force field, i.e., without the use of conjectured 
forms of rate equations satisfied by coarse-grained variables which are calibrated using 
experimental or molecular dynamics simulation. As experimental data at atomic resolution is 
now available for validation, and as many processes (e.g. chemical reactions) require atomic 
scale information, the models should simultaneously account for processes on space and time 
scales from atomic to course-grained.  A spectrum of coarse-grained variables is introduced that 
are tailored to the system and phenomena of interest. Types that have been coevolved with the 
atom-resolved states include space-warping [1, 2], curvilinear coordinates for polymers [3], 
density-field variables [4], conserved quantities such as energy [5], and scaled coordinates [6, 
7]. Atomic resolution is preserved by coevolving the coarse-grained and atom-resolved states 
[8, 9]. The multiscale coevolution approach is developed for both classical systems (i.e., 
molecular dynamics) as well as for quantum electronic systems.  
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Fig. 1: Supramillion atom 
structures of interest in 
materials engineering, 
environmental remediation, 
and renewable resource 
generation are being 
efficiently designed and 
analyzed with our Multiscale 
MD Toolkit. 



Approach                   
The coevolution methodology is deductive in character. Thus we start with Newton’s or 
Schrodinger’s equations for N particles and introduce coarse-grained variables defined in terms 
of microvariables. The equations for the coevolution of the micro and CG states are then 
derived. Techniques used to derive the coevolution algorithms include renormalized 
perturbation expansion [8, 10], Lie-Trotter factorization [5, 9], and variational principles [7, 11]. 
Results for the many-atom classical dynamics problem are implemented as an efficient 
computational platform that takes advantage of existing conventional MD, and similarly for the 
use of standard packages for quantum problems. To advance the field of multiscale theory and 
computation, the implementation is in two distinct forms. For the MD type calculations, the 
protoMD software is developed for researchers with interests in proposing and testing multiscale 
algorithms [12]. In contrast, the DMS package folds all the multiscale techniques directly into the 
GROMACS packages to achieve optimal computations efficiency by avoiding writing and 
reading files.  
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Multiscale modeling of reaction-diffusion and cytoskeletal dynamics during gradient 
signaling 

Motivation 
Many vital eukaryotic cellular processes require the cell to respond to a directional 
gradient of a signaling molecule. The first two steps in any chemotactic pathway are 
sensing and cell polarization. Many details are known regarding the biochemical details 
of these steps in various pathways, but much of the underlying physics of the process as 
a whole remains unresolved. Particularly, although it has become apparent in the last 
decade that cellular noise plays a large role in the accuracy of any response, the capacity 
for a given pathway to accurately track a chemical gradient despite cellular and 
environmental fluctuations is unknown. To effectively perform their functions, cells 
must have ways of mitigating (or taking advantage of) these fluctuations.  

A fundamental omission in many existing models of eukaryotic chemotaxis is the lack of 
coupling between the biochemical description of the pathway and the mechanical 
description of the cytoskeleton. The cellular cytoskeleton may play a critical role in 
helping gradient sensing networks make accurate decisions. The long-term memory 
afforded by the slowly changing cytoskeletal structure introduces a longer time scale 
that can work with the fast reaction-diffusion dynamics to filter fluctuations. Thus the 
cytoskeletal dynamics, not just the biochemistry of the pathway, may be critical for 
understanding cellular gradient sensing behavior. 

Challenge 
To correctly model the spatial response of a eukaryotic cell one must be able to 
probabilistically describe both i) the reaction-diffusion dynamics of the signal 
transduction pathway, and ii) the vesicle and filament dynamics of the cytoskeleton, 
along with their interactions. The time and length scales of these processes are 
dramatically different and no tractable methods presently exist for simulating an 
integrated model. 

Approach 
Stochastic reaction-diffusion simulations have traditionally been considered too 
computationally costly for studying decision-making processes, which require long 
simulations. Two new approaches may break this assumption. The first is the 
development of algorithms with fine-grained parallelism that can take advantage of GPU 
accelerators. The second is the use, for the first time, of enhanced sampling (ES) 
methods to calculate the rare event statistics of stochastic reaction-diffusion processes. 
ES methods should allow agent-based models of cytoskeletal dynamics to be integrated 
with stochastic reaction-diffusion models using a simultaneous multiscale approach to 
explore the cytoskeleton’s role in noise filtering. It can be anticipated that incorporating 
cytoskeletal dynamics will be a key innovation toward models with predictive power for 



studying the chemotactic decisions of individual cells. 

 

Figure 1 - Multiscale modeling of gradient signal transduction in the yeast mating 
response. Only a portion of the pathway is shown. 
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Tim Scheibe – Pacific Northwest National Laboratory 
 

Hybrid Multiscale Simulation of Mixing-Controlled Biogeochemical Reactions 
 
Motivation 
It is now well known that apparent reaction rates observed in natural systems 
vary with observational scale, with rates generally decreasing with increasing 
length scales. This negatively impacts predictive ability of models, since 
directly measured or predicted fundamental rates cannot be used in 
application-scale simulations. This phenomenon is generally attributed to the 
apparent effect of transport limitations in heterogeneous systems at larger 
scales.  For example, the apparent rate of microbial reduction of solid iron 
oxide minerals depends not only on the fundamental reaction rate at the 
grain surface but on the diffusion-limited rate of delivery of soluble electron 
donor and other substrates to the surface. This hinders the applicability of 
fundamental genome-scale models of microbial metabolism to field-scale 
reactive transport simulations (Tartakovsky et al. 2013).  
 
Challenge 
Direct simulation of fundamental processes (microscale simulation) is 
computationally infeasible and lacks sufficient supporting characterization data.  However, in some 
situations macroscopic (upscaled) models and parameters may not be valid.  In such situations the 
ability to robustly predict system behavior from fundamental principles is called into question. 
 
Approach 
When it is possible to define (in terms of macroscopic variables) conditions under which macroscopic 
models are invalidated (Battiato et al. 2009), and such conditions are limited to a relatively small 
fraction of the model domain (in space and/or time), it may be possible to combine microscale and 
macroscale simulation in a single model framework, a process known as hybrid multiscale simulation 
(Scheibe et al. 2014). In the example discussed above, one would utilize pore-scale simulations (at which 
the fundamental genome-scale simulation of microbial metabolism is appropriate) where necessary, 
combined with upscaled models and parameters (e.g., advection-dispersion equation) where upscaling 
conditions are valid.  Alternatively, one could use a hierarchy of models in which fundamental (e.g., 
pore-scale) models are run over short time periods to inform (parameterize) upscaled models with 
periodic updating as necessary (e.g., Tartakovsky and Scheibe 2011). 
 

Figure 1: Simulated acetate 
distribution (green) in a 
pore-scale simulation of 
microbial iron reduction. 
Iron reduction occurs at the 
surface of solid grains 
(white).  From Tartakovsky 
et al. 2013. 



Figure 2: Simulation of two reacting solutes (blue, green) forming a mineral reaction product (red). Top row is a 
pore-scale simulation result at three selected times; bottom row is a comparable multiscale simulation with pore-
scale processes simulated only over a portion of the time period. This result demonstrates the feasibility of a 
hybrid multiscale approach to a mixing-controlled reaction.  From Tartakovsky and Scheibe, 2011. 
 
Key References 
Battiato, I., D. M. Tartakovsky, A. M. Tartakovsky, and T. Scheibe, "On breakdown of 

macroscopic models of mixing-controlled heterogeneous reactions in porous media," 
Advances in Water Resources, 32(11):1663-1673, 2009. 

Scheibe, T. D., E. M. Murphy, X. Chen, K. C. Carroll, A. K. Rice, B. J. Palmer, A. M. Tartakovsky, I. Battiato, 
and B. D. Wood, “An analysis platform for multiscale hydrogeologic modeling with emphasis on 
hybrid multiscale methods,” Ground Water, published online March 13, doi: 10.1111/gwat.12179, 
2014.  

Tartakovsky, A. M. and T. D. Scheibe, “Dimension reduction method for advection-diffusion-reaction 
systems,” Advances in Water Resources, 34(12): 1616-1626, doi:10.1016/j.advwatres.2011.07.011, 
2011. 

Tartakovsky, G. D., A. M. Tartakovsky, T. D. Scheibe, Y. Fang, R. Mahadevan and D. R. Lovley, “Pore-scale 
simulation of microbial growth using a genome-scale metabolic model: Implications for Darcy-scale 
reactive transport”, Advances in Water Resources 59: 256-270, 
doi:10.1016/j.advwatres.2013.05.007, 2013. 

Complete Pore-
Scale Solution 

Dimension 
Reduction 
Solution  



Multiscale Biological Computer Simulation at ORNL 
 

Jeremy C. Smith, Xiaolin Cheng, Jerry Parks. 
 

Computer modeling and simulation can rationalize experimental information across scales. 
Essential aspects of the planned development at ORNL are i) the integration into simulation 
models of available experimental information as well as –omics based systems models, ii) 
interfacing of simulation methods at different scales, by informing larger-scale, coarse-grained 
methods with results from finer-detail computations. The result will be a self-consistent 
description of mechanisms in and between cells. The scaling and use of these codes on DOE 
supercomputers, and in particular the TITAN machine and its successors at ORNL, will be 
integral to the success of this approach. 

Large-Scale Molecular Dynamics (MD) – Supercomputing now permits the simulation at atomic 
detail of systems up to 100M atoms in size and on the microsecond timescale. Hence, atomistic 
MD has moved well beyond the single-molecule level to permit systems-level simulation of 
hundreds of interacting biological macromolecules such as those involving transport of chemical 
signals across the cellular membrane. Extrapolation of current performance at the petascale to the 
exascale indicates that we would, ultimately, be able to perform MD simulations of systems of 
~1011

 
explicit interacting atoms, i.e., approximately the number of atoms in a bacterial cell, for 

about 10 microseconds. Existing genomic and structural data will serve to provide information on 
starting configurations for these simulations.  

Cell-Level Brownian Dynamics (BD) Simulation – Events in the cell that are on the millisecond 
timescale or longer, and system sizes beyond 100M atoms, currently call for simulation methods 
more simplified than atomistic MD, averaging out the unimportant degrees of freedom so as to 
preserve long time-scale properties. BD removes explicit solvent, and thus will permit us to 
simulate systems 100× larger or longer than those accessible to MD. These methods scale 
efficiently on a variety of supercomputers, and will permit cell-scale simulations on timescales up 
to one second. Important processes occurring in the millisecond-second time window include 
protein folding and dynamics, macromolecular associations, receptor activation, lateral diffusion 
and phase separation in membranes, and the catalytic cycles of transcriptional and translational 
machinery. 

Integration of Simulation Models across Timescales – An important aspect of the work will be 
the use of information from atomistic MD to derive parameters for BD simulations, the results of 
which are in turn transferred as parameters for  whole cell reaction-diffusion description such as 
that pioneered by Zan Luthey-Schulten (UIUC). 
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Concurrent Hybrid Multiscale Methods for Reactive Transport in Porous 

Media:  Some Challenges 
 

Motivation 

There have been several experimental and theoretical studies demonstrating that some standard 

continuum-scale models can break down for environmentally relevant cases of reactive transport in 

porous media.  One important class of problems is mixing-controlled reactions, which have been 

investigated intensely in recent years, including many studies by several of the workshop participants 

(e.g., [1], [2] [3]).  When the reaction occurs on a time scale that is shorter than the time scale of 

advection and diffusion processes that homogenize the reactant concentrations over the scale of the 

REV, then classical theory breaks down and the rate of reaction depends upon localized concentrations 

at the pore scale.  Moreover, if the reaction leads to changes in the porosity (e.g., precipitation/ 

dissolution, biofilm growth) then it may also be difficult to upscale the impact of localized changes in 

pore space morphology upon continuum-scale properties like effective diffusion, dispersion, and 

permeability. 

Hybrid multiscale methods are one approach to address this challenge.  The spatial location of the 

mixing zone is identified; the “micro-scale” (i.e., pore scale) model is solved in this domain, and 

information is exchanged between the pore and continuum scale domains across the boundary.  Several 

papers have been published recently demonstrating this approach ( e.g., [4], [3], [5]).  A schematic is 

taken from the survey paper by [1], shown below on the left.  Pore-scale equations are solved in the 

central mixing zone, while continuum-scale equations are solved away from the mixing zone.  On the 

right is shown a figure from our work on modeling biofilm growth [6].  Reactants diffuse across a central 

mixing zone where biodegradation occurs and biofilms develop; pore-scale models are required in the 

central zone when the reaction rate is large. 

  

 

Some Challenges 

I would like to raise several  questions/challenges for discussion at the workshop.  I believe that these 

issues may also pertain to other fields of application in addition to porous media transport. 



Is it practical to explicitly solve the micro-scale problem within the mixing zones for realistic problems? 

Field-scale problems normally encompass large spatial scales.  For example, contaminant plumes span 

tens or hundreds of meters at hazardous waste sites, and sites of interest to BER (e.g., Hanford, Rifle).  

Mixing zones at the interfaces between fluids with different composition can therefore extend over 

these large scales, and it may not be feasible to solve pore-scale models at the millimeter to centimeter 

scale throughout the domain.  An alternative may be to use “response-surface” approaches (e.g., [7] ) 

where many micro-scale simulation are performed “off-line” for a wide range of parameters and 

conditions, the appropriate quantities of interest at the continuum-scale are computed, and then 

statistical (or maybe machine-learning) methods are used for upscaling.  Perhaps other approaches are 

possible.  

How do we account for uncertainty about the micro-scale? 

Most published work applying hybrid models in porous media solve the pore-scale based on some 

assumed structure of the porous medium.  Even if the porous medium is statistically homogeneous, it is 

not clear if another realization of the porous medium will yield the same macro-scale behavior.  One 

approach would be to solve an ensemble of pore-scale problems, which leads to the possibility of 

stochastic multi-scale approaches.  However, this may not be computationally feasible.  In addition to 

uncertainty about the porous medium geometry, there will be many other sources of uncertainty 

regarding the pore-scale physics and biogeochemistry. 

How do we evaluate (test/validate) multi-scale models? 

Are there some benchmarks or tests to assess if model ‘performance’ is improved when a multi-scale 

approach is used?  Will parameter calibration still be required when applying multi-scale models to real-

world cases, and if so, will that complicate comparison with calibrated continuum-scale models with 

empirical reaction models?    
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Of Mice and Men … and Microbes 
 
Motivation 
Biological systems are at the core of human existence. They directly determine our health and disease, 
are responsible for supplying food for a growing world population, and govern the dynamics of our living 
environments and ecosystems. Biological systems are found at a wide spectrum of scales in multiple 
dimensions of time, space, and functional organization. Most biological processes that ultimately govern 
these systems occur inside cells, at the molecular (nanometer) level and within seconds or faster. Yet, 
these processes operate in such large numbers and in such a synergistic and hierarchical manner that 
they make hearts tick, supply seven billion people and incomparably more animals with oxygen, keep 
the oceans viable, and are the 
source of most of the energy we 
use today. Recent advances in 
computing and systems biology 
offer the opportunity to study 
these complex phenomena in a 
quantitative, systemic manner. 
As an example from our lab, we 
currently analyze the dynamics 
of bacterial meta-populations in 
Atlanta’s main water reservoir. 
In a very different project, we 
studied how slightly altered 
biochemical processes can lead 
to disease that emerges close to 
the end of life [1]. The vast 
discrepancy in scales makes the 
study of multiscale biological 
systems exciting and, at the 
same time, daunting. 
 
Challenge 
Biological systems pose a challenge that can be summarized in one word: complexity. This complexity is 
manifest in large numbers of components and processes, the nonlinearity of most of these processes, 
and threshold effects where small alterations in parameter values can trigger dramatic qualitative 
changes. 
 Large Numbers. Even simple bacteria typically possess thousands of genes, proteins, and 
metabolites. Our brain contains an estimated 100 billion neurons, which correspond with each other 
through trillions of connections in the form of synapses. Moreover, the function of the brain is 
supported by other cells, such as astrocytes and glia cells, at an order of 10 to 50 cells per neuron [4]. 
These magnitudes indicate that even bookkeeping is a difficult aspect of biological systems analysis and 
that functional information integration is much more challenging. 
 Nonlinear Processes. Essentially all processes in biology are nonlinear. In particular, we seldom 
find situations where operations scale linearly from small to large quantities. The nonlinearities often 
stem from the very rich regulatory networks that control even relatively simple systems. As a very 

 
Simplified diagram of the heat stress response in the unicellular yeast 
Saccharomyces cerevisiae (adapted from [2,3]). 
 



prevalent example, feedback inhibition keeps variables in check, but this mechanism also has the 
potential of creating oscillations and instabilities. The nonlinearity of processes creates significant 
challenges to the biomedical scientist or engineer, as it invalidates the principle of superposition, which 
in simple terms holds that the output to a sum of two inputs equals the sum of the outputs if the inputs 
are applied separately. As a consequence, biological systems cannot necessarily be taken apart and 
validly studied through analyses of their parts, and one must wonder to what degree the results of any 
in vitro experiments can be reliably translated into insights regarding functioning systems in vivo. 
 Threshold Phenomena. As a special case of nonlinear behaviors, many biological systems have 
the capacity to respond in a discontinuous, switch-like manner. Such switches have been observed in 
gene regulatory systems, signaling systems, and many other biological phenomena. The challenge of 
these thresholds is that critical values at which switches happen are rarely known, and that many 
potentially switching processes may coexist within the same system. 
 
Approach 
Until about the turn of millennium, mathematics beyond the high school level was essentially banned 
from mainstream biology, with the exception of statistics, which however was executed by specialists. 
The –omics revolution, with its supporting high-throughput data generating technologies, has left no 
doubt that this lack of interest in mathematics and computing is no longer affordable. The response to 
this situation has been the emergence first of bioinformatics and subsequently of systems biology. The 
former focuses primarily on large-scale, static molecular datasets, such as gene expression patterns and 
profiles of proteins and metabolites, while the latter embraces dynamic phenomena, adaptation, and 
the complexity sketched above. Bioinformatics and systems biology borrow from statistical methods 
such as machine learning, and also utilize dynamical systems and control theory, as well as numerous 
techniques from computer science. Systems biology furthermore draws from biomedical engineering, 
materials science, and robotics. While it is a young science, early practical applications are already 
crystalizing in the partner fields of synthetic biology and metabolic engineering. The range of potential 
applications is arguably limitless, spanning the spectrum from the microbial production of valuable 
organics to improved food production, personalized medicine, and the responsible stewardship of our 
environments.  

Our lab uses primarily, although not exclusively, Biochemical Systems Theory (BST) [5-8] as the 
modeling framework for most of our biomedical applications. BST provides strong guidance for 
designing, diagnosing, and analyzing models, requires only minimal assumptions, and is in principle 
scalable to very large systems. Also, BST offers germane means for bridging temporal and organizational 
scales [9]. The key feature of BST is the exclusive use of products of power-law functions as process 
representations. While this strategy may seem restrictive, it is fundamentally advantageous for the 
design and analysis of models that are ill characterized. Furthermore, it was shown that BST models are 
rich enough to represent any nonlinearities that can be created with arbitrary systems of ordinary 
differential equations [10].  
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Position Paper for “Multiscale Computation: Needs and Opportunities for BER Science”  
Gregory A. Voth – The University of Chicago 
 
Motivation: There is a pressing need for a new integrated multiscale modeling methodology to study 
complex biomolecular systems of relevance to the DOE-BER mission (e.g., in bacteria and the 
environment). Applications of such an approach can also include large scale scientific computations on 
DOE leadership class computational resources. This effort will be unique in both its scope and its 
methodology, and it can provide a complementary synergy with existing DOE-funded activities in 
structural biology, environmental science, and bioinformatics. 
 
Challenge: Biomolecular systems that operate at scales relevant to cellular biology collectively function 
on length scales of the order 1 µm and timescales of ms or longer. These phenomena are also intrinsically 
multiscale in nature and the molecular features of the underlying biomolecules help to define this 
collective behavior. Brute force computational approaches such as atomistic MD, even carried out on 
leading edge supercomputers, can provide only a relatively limited snapshot into the overall behavior of 
such systems; however, novel multiscale theoretical and computational approaches (in combination with 
large-scale computing) can provide a new paradigm to access the scales relevant to cellular biology. A 
significant challenge therefore exists to develop and apply a transformative, integrated multiscale 
modeling methodology that can push the frontiers of biomolecular simulation into realms of cellular-
scale biology, especially that relevant to the BER mission. 
  

 
 
Approach: Developing and implementing a multiscale computational methodology to simulate key 
biomolecular processes requires incorporating chemical reactions, large and small-scale protein dynamics, 
and macromolecular self-assembly into a single unifying framework that spans length scales ranging from 
Ångstroms to microns and beyond. Moreover, this methodology must accurately bridge dynamical 
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phenomena that occur on the femto- to picosecond timescale to processes that occur on the millisecond 
biological timescale, and it must do so for multi-million or billion atom molecular systems. This is a 
multiscale challenge of the highest degree in both the size and time domains. Overcoming this challenge 
will require an elegant incorporation of the quantum (chemically reactive) phenomena into classical 
simulations, the sampling of rare events, atomically detailed and coarse-grained (CG) force fields, and 
coupled kinetic models all within a rigorous framework of multiscale molecular modeling and simulation 
to ultimately understand the mechanism of complex biomolecular processes. A key component of this 
overall scientific methodology can be derived from coarse-graining theory,1 broadly expanded, designed, 
and implemented within an innovative “hybrid” multiscale modeling framework (cf. Fig. 1) that also 
extensively utilizes experimental data and “knowledge-based” computational modeling. 

The proposed overall hybrid multiscale modeling methodology is schematically depicted in Fig. 1 on 
the previous page for the specific and very interesting example of the bacterial carboxysome, a 
specialized microcompartment that dramatically enhances the rate of carbon fixation in bacteria.2 This 
application is just one example of the overall approach, but it illustrates the key integrated concepts of the 
approach. As the first step, an initial multiscale simulation is designed with direct input from 
experimental data, e.g., in this case cryo-electron microscopy data (upper left panel). From here an initial 
knowledge-based “first pass” CG model is developed (upper middle panel) that represents a substantial 
paradigm shift away from traditional “bottom-up” CG modeling of biomolecular systems.1 In this CG 
model the system is very aggressively coarse-grained (i.e., not at the amino acid level, but at a 
significantly lower CG resolution). Importantly, physical principles are still utilized extensively in this 
level of CG modeling along with experimental data (i.e., blending physical interactions and “knowledge-
based” modeling). Next, large-scale and highly scalable CG MD simulations are run (upper right panel) in 
order to characterize the multi-protein system and, more importantly, to identify specific regions at the 
CG level (lower right panel) that are then targeted for refinement and additional high resolution all-atom 
MD simulations (lower middle panel), which are guided by both the CG model and experimental data. (In 
this particular case, the coat proteins that control diffusion across the carboxysome shell would be studied 
in the CG-guided all-atom simulations.) Next, the CG models are refined, expanded, and verified based 
on the CG-guided all-atom MD simulations in combination with additional high resolution experimental 
results if available (e.g., structural information of hexamer interfaces or coat protein composition via x-
ray crystallographic or NMR studies). Finally, the overall multiscale methodology either continues 
refinement via an iterative process (looping back to the upper left) or it terminates and provides the 
desired predictions/results. This overall hybrid multiscale modeling framework can provide a 
transformative theoretical and computational methodology that will be important to he DOE-BER 
mission. Preliminary results demonstrating the feasibility of certain aspects of this approach have been 
published by the Voth group for the case of the HIV-1 virion,3 and key aspects of the coarse-grained 
model theory and algorithms published.4,5 

Key References 
1. Voth GA ed (2009) Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC 

Press/Taylor and Francis Group, Boca Raton, Fla.), 1st. Ed. 
2. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO, Atomic-Level 

Models of the Bacterial Carboxysome Shell. Science 2008, 319, 1083-1086. 
3. Ayton GS, Voth GA, Multiscale Computer Simulation of the Immature Hiv-1 Virion. Biophys. J. 

2010, 99, 2757-2765. 
4. Dama JF, Sinitskiy AV, McCullagh M, Weare J, Roux B, Dinner AR, Voth GA, The Theory of 

Ultra-Coarse-Graining. 1. General Principles. J. Chem. Theory Comput. 2013, 9, 2466-2480. 
5. Grime JMA, Voth GA, Highly Scalable and Memory Efficient Ultra-Coarse-Grained Molecular 

Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 423-431.  
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Appendix D 

Code Organization Process Simulated Primary Applications User Base Contacts 
CLM-
PFLOTRAN 

LBNL Land surface model that includes 2-D surface 
flow, 3-D subsurface flow, and reactive 
transport processes 

• 2-D non-isothermal surface flow 
• 3-D non-isothermal variably saturated 

subsurface flow (including ice phase) 
• 3-D reactive transport processes 
• Land surface processes including 

surface energy balance and vegetation 
dynamics 

Understanding fate and transport of 
below-ground carbon in Arctic landscapes 
under climate change. 

DOE laboratories: LBNL, 
ORNL 

Gautam Bisht 

AMDF 
(Long time-
scale atomistic 
simulations) 

LANL Atomistic Dynamics of Materials 
• Thermodynamics (phase diagrams, 

free energy barriers) 
• Kinetics (rates of defect nucleation, 

diffusion, clustering) 

• Nuclear materials 
• Mechanical deformation of solids 
• Nanotechnology (film growth, 

nanoscale friction) 

Mostly LANL, a few 
universities 

Danny Perez 

Unnamed Code UT-Austin Pore-scale and continuum-scale single-phase 
fluid flow, transport, and reactions 

• Newtonian and non-Newtonian flow 
Transport with diffusion and 
advection (modules for computing 
dispersion coefficents) 

• Homogeneous and heterogeneous 
reactions 

• Coupling pore-scale regions to 
continua for hybrid modeling 

• Contaminant flow and transport with 
adsorption/reaction effects 

• Upscaling flow, transport, and reaction 
properties 

• High performance pore-scale domain 
decomposition and hybrid modeling 

Balhoff research group Matthew 
Balhoff 

Boltzmann 
(Agent-based 
Cell 
Metabolism) 

PNNL General code for simulating sets of coupled 
reactions using statistical 
thermodynamics/fluctuation theory 

Cell metabolism, 
nanotechnology/materials 

In development, not 
released 

Bill Cannon 
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Code Organization Process Simulated Primary Applications User Base Contacts 
Mosart 
(Model for 
Scale Adaptive 
River Transport) 

PNNL Reach-scale transport and transformation of 
water, heat and biogeochemistry fluxes 

• Reach to regional scale channel water 
stages and velocity variations with 
explicit accounting for climate and 
human-induced changes 

• Reach to regional scale stream 
temperature variation with explicit 
account for climate and human-induced 
changes 

• Reach to regional scale sediment, C and 
N cycles with explicit account for 
climate and human-induced changes 

PNNL, WSU Hong-Yi Li 

NWChem  
(High-
performance 
Computational 
Chemistry) 

PNNL Chemical reactions; electronic structure of 
molecular assemblies, biomolecules, 
nanostructures, and solid-state; ground-and 
excited-state chemical processes; molecular 
properties, and relativistic effects 

Molecular spectroscopy, catalysis, 
condensed phase systems in complex 
environments, thermodynamics of 
chemical processes, interfacial chemistry 

Open source (downloaded 
~10,000 times) 

Karol 
Kowalski 

Reactive 
Transport 
Lattice 
Boltzmann 
Method 

LANL Pore-scale multiphase reactive transport 
• Liquid/gas flow, with phase transition 

Transport (advection/diffusion) of 
multi-component solute species 

• Heat Transfer (convection/diffusion) 
• Multi-component homogeneous 

reactions, either treated kinetically or 
as in instantaneous equilibrium 
Precipitation/dissolution of multiple 
minerals, nucleation, sorption, ion 
exchange 

• Changes in solid/pore geometry 

• Contaminant transport and biomass 
growth 

• Multiphase flow and reactive transport 
involved in CO2 sequestration 

• Coupled mass transport and (electro) 
chemical reaction in fuel cells and 
micro-reactors 

LANL Qinjun Kang 

Taxila LBM LANL Pore-scale multiphase fluid flow, limited 
transport and reaction capability 

• Lattice-Boltzmann simulations for 
multiphase flow, using modified 
Shan-Chen model 

• SRT, MRT, higher order derivative 
estimates for stable interfaces 

• Comparisons to analogue fluid 
microfluidic device experiments 

• Carbon sequestration applications 

LANL Qinjun Kang 
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Code Organization Process Simulated Primary Applications User Base Contacts 
AMBER 
(MM & 
QM/MM) 

UCSD Classical Particle MM using either MM or 
QM/MM potentials 

• Solution Phase biomolecules 
• Lipid membranes and membrane 

transport 
• Membrane bound biomolecules 
• Protein, small molecule surface 

interactions 

• Protein-Ligand binding free energies 
• Enzyme reaction mechanisms 
• Lead discovery and optimization 
• Biocatalysis design 
• Lipid transport mechanisms 

~1,100 site 
licenses/version 
15,000 users 
50 developers 

Ross Walker 

CrunchFlow 
(EcoTrait) 
(Microbial 
Trait-Based 
Reactive 
Transport) 

Berkeley Lab Multicomponent Reactive Transport 
• Variable density flow, advective-

diffusive-dispersive transport 
• Multicomponent aqueous 

equilibrium, gas equilbrium, mineral 
precipitation and dissolution, surface 
equilibrium, ion exchange, isotopes 

• Microbially mediated reactions with 
thermodynamic considerations 

• Water-rock interactions, chemical 
weathering, hydrothermal 

• Radionuclide transport, exchange and 
sorption 

• Contaminant transport and 
bioremediation 

• Soil, sediment, water biogeochemical 
(C, N, Pc, S, Fe etc) cycling with 
adaptive microbiology informed by 
metagenomic reconstruction 

• CrunchFlow-widely 
used 

• EcoTrait-under 
development at LBNL 

Eoin Brodie 

eSTOMP 
(eXtreme Scale 
Subsurface 
Transport Over 
Multiple Phases) 

PNNL Nonisothermal multiphase flow and 
multicomponent reactive transport, 
geomechanical deformation 

• Field scale simulation of flow and 
contaminant transport 

• Field scale simulation of 
biostimulation 
Coupled with geomechanics simulator 
to model ground deformation due to 
CO2 injection 

• Scalable version used 
primarily by PNNL 
staff and one DOE 
contractor 

• Serial version used by 
national laboratories, 
government agencies, 
private companies, and 
universities 

Yilin Fang 
Steve 
Yabusaki 
Bruce Palmer 
Tim Scheibe 

SPH and DPD 
modules in  
LAMMPS 

PNNL Multiscale, multiphase, and multiphysics 
modeling 

• Complex fluids (non-Newtonian 
fluids, plastic materials, suspensions) 

• Soft matters (polymers, colloids, 
biological cells) 

• Moving interfaces and boundaries 

• Ice sheet dynamics (non-Newtonian 
fluid, moving interface) 

• Friction stir welding process (plastic 
large deformation, moving boundary) 

• Colloid transport in porous media 
(fully coupling of colloid dynamics 
and fluid dynamics) 

• Electrokinetic flow (coupling of 
hydrodynamics and electrostatics) 

PNNL, Brown University, 
SNL 

Wenxiao 
Pan,  
Alex 
Tartakovsky 
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Code Organization Process Simulated Primary Applications User Base Contacts 
PFLOTRAN SNL, 

ORM 
Research, 
LBN,L 
LANL, 
Intel 

Subsurface reactive multiphase flow, heat 
transfer, biogeochemical transport, 
geomechanics 

• Immisible/miscible two-phase (liquid-
gas) flow 

• Heat transfer 
• Multicomponent solute transport 

(advection/hydrodynamic dispersion) 
• Chemical reactions: aqueous 

speciation, ion activity models, 
mineral precipitation-dissolution, ion 
exchange, isotherm-based sorption, 
surface complexation (equilibrium, 
kinetic, multirate), radioactive decay 
and ingrowth, colloids, 
microbiological 

• Multiple interacting continua 

• Carbon sequestration 
• Climate change 
• Enhanced geothermal energy 
• Fate and transport of contaminants 
• Hydraulic fracturing 
• Nuclear waste disposal 
• Radioisotope tracers 

~10 developers 
20+ users (unknown) 
Mailing lists:  
pflotran-
dev@googlegroups.com 
pflotran-
users@googlegroups.com 

Glenn 
Hammond, 
Peter 
Lichtner 

COBRA 
(Metabolic 
Network 
Modeling) 

UW-Madison Intracellular metabolic reaction rates, cellular 
growth, cellular consumption/production rates 

• Predicts rates of intracellular 
reactions in genome-scale networks 

• Predicts cellular growth rates for 
varying environmental conditions and 
genetic perturbations. 

• Predicts cellular 
consumption/production rates of 
environmental nutrients 

• Metabolic engineering (strain design, 
process design) 

• Systems biology: data integration and 
analysis 

• Experimental design (network 
discovery) 

>500 users Jennifer Reed 

TETHYS 
(Transient 
Energy 
Transport 
Hydrodynamics 
Simulator) 

PNNL • Laminar and Turbulent Incompressible 
Fluid Flow (Navier-Stokes) 

• Energy Transport – conduction, convection, 
buoyancy, conjugate heat transfer 

• Solute Transport (Eulerian) – diffusion, 
advection, conjugate mass transfer, 
homogeneous reactions, surface reactions 

• Solute Transport (Lagrangian) - diffusion, 
advection, homogeneous reactions 

• Estimation of dispersion in complex 
geometries using particle tracking and 
volume averaging 

• Linkage to geochemical code underway 

• Environmental hydrodynamics and 
water quality 

• Pore-scale flow and transport 

PNNL staff Marshall 
Richmond, 
Bill Perkins 
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Code Organization Process Simulated Primary Applications User Base Contacts 
CrunchFlow LBNL, PSU Flow, transport, and (bio)geochemical 

reactions at multiple scales (pore (microns) to 
field scales (10s meters)) 

•  single-phase flow (water)  
•  Dispersion and diffusion 
•  Reaction processes: mineral 

dissolution/precipitation, surface 
complexation, ion exchange, 
microbe-mediated redox reactions 

• geological carbon sequestration 
•  environmental bioremediation 
• chemical weathering, soil formation 

LBNL, 
various universities 
(PSU, Stanford, Berkeley) 

Carl Steefel 

DHSVM 
(Distributed 
Hydrology Soil 
Vegetation 
Model) 

PNNL A distributed, physics-based approach to solve 
coupled energy and water balance equations 
describing watershed processes at high spatial 
(10 to 90-m) and temporal (hourly) resolution 

• Topographic controls on energy 
transfer and water movement 

• Spatial/temporal distribution of 
canopy/ground snow conditions, 
evapotranspiration, soil moisture, 
ground saturation, runoff and 
streamflow 

• Distributed erosion and sediment 
transport 

• Stream temperature 
•  Nutrient cycling and export 

• Land surface energy and moisture 
fluxes 

• Climate-hydrology interactions 
• Impacts of climate and land use change 

on water resources 

Broad and active 
international user base 
>100 

Mark 
Wigmosta 

PLAS 
(Biological 
Systems 
Analysis) 

Georgia Tech Biological processes; typically metabolic 
pathway systems 

Simulation and analysis of ODE models 
from the fields of biology and medicine; 
student training 

System biologists Antonio 
Ferreira 

protoMD 
(Process 
Simulation)  

IU-
Bloomington 

Self-assembly, structural transition, and 
chemical reactions in nanoscale 
supramolecular assemblies 

Development of multiscale algorithms. 
Computer-aided nanomaterial design with 
applications in nanoreactors, vaccines, 
strong materials, and nanoelectronics 

Small group of selected 
users 

Peter 
Ortoleva 

GROMACS 
NAMD 
Amber 
CHARMM 

ORNL Molecular Scale, 0.1-10nm; 1femtosec-
10microsecs 

Bioenergy, Biology, Biogeochemistry, 
Chemistry, Materials 

• GROMACS:16,000 
citations; 

• CHARMM 31,000 etc 

Roland 
Schulz 

RAPTOR 
(Rapid 
Approach for 
Proton Transfer 
and Other 

University of 
Chicago 
ANL 

Reactive MM simulations 
• Multistate simulation algorithms 
• Atom-transfer, synthesis, 

decomposition, mutation reactions 
• Large-scale condensed phase 

• Proton and Hydroxide transport in 
clusters, liquids, proteins, polymer 
electrolyte membranes 

• Fundamental processes in bulk water 
and at water-air interface 

Voth group and 
collaborators (~20) 

Gregory 
Voth 
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Code Organization Process Simulated Primary Applications User Base Contacts 
Reactions) 
(add-on for 
LAMMPS) 

simulations 
• Multi-configurational coarse-grained 

models 

• Biomolecular: Proton transport in 
Influenza A M2, CcO, carbon 
nanotubes 

• Electrochemical: Proton and hydroxide 
exchange membranes 

UCG-MD 
(Ultra-Coarse-
Grained 
Molecular 
Dynamics) 

University of 
Chicago, 
ANL 

Large-scale, Coarse-Grained MD 
• Efficient load balancing of large CG 

systems via Hilbert space-filling 
curves (implicit solvent etc.) 

• Internal states/properties of CG 
“beads” dynamic at runtime (“Ultra-
CG”) 

• Self-assembly of large, biologically 
relevant structures (e.g., viral capsids) 

• Dynamics of large-scale assemblies 
(membranes, cytoskeleton) 

Voth group and 
collaborators (~5, 
increasing as code 
develops)) 

Gregory 
Voth 
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