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ABSTRACT

Motivation: Next-generation sequencing allows us to sequence
reads from a microbial environment using single-cell sequencing or
metagenomic sequencing technologies. However, both technologies
suffer from the problem that sequencing depth of different regions
of a genome or genomes from different species are highly uneven.
Most existing genome assemblers usually have an assumption that
sequencing depths are even. These assemblers fail to construct
correct long contigs.
Results: We introduce the IDBA-UD algorithm that is based on
the de Bruijn graph approach for assembling reads from single-
cell sequencing or metagenomic sequencing technologies with
uneven sequencing depths. Several non-trivial techniques have been
employed to tackle the problems. Instead of using a simple threshold,
we use multiple depthrelative thresholds to remove erroneous k-mers
in both low-depth and high-depth regions. The technique of local
assembly with paired-end information is used to solve the branch
problem of low-depth short repeat regions. To speed up the process,
an error correction step is conducted to correct reads of high-depth
regions that can be aligned to highconfident contigs. Comparison
of the performances of IDBA-UD and existing assemblers (Velvet,
Velvet-SC, SOAPdenovo and Meta-IDBA) for different datasets,
shows that IDBA-UD can reconstruct longer contigs with higher
accuracy.
Availability: The IDBA-UD toolkit is available at our website
http://www.cs.hku.hk/∼alse/idba_ud
Contact: chin@cs.hku.hk
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1 INTRODUCTION
Since, over 99% of microbes cannot be cultivated, single-cell
sequencing and metagenomic sequencing technologies are used to
study these microbes (Chitsaz et al., 2011; Wooley et al., 2010).
Single-cell sequencing technology amplifies and sequences genome
of an individual cell without cultivation (Chitsaz et al., 2011). Since
the amplification bias, the sequencing depths at different regions
of the genome can be extremely uneven. Metagenomic sequencing
studies a microbe community as a whole (Wooley et al., 2010)
and has similar problem of uneven sequencing depths of genomes
because different species in a sample have different abundances.
Almost all existing de novo assembly tools were designed for single
genome with uniform sequencing depth and were used by some
recent studies on microbes (Rodrigue et al., 2009; Woyke et al.,
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2009). However, these tools may not be able to produce long contigs
when applying to data with highly uneven sequencing depths.

Many existing de novo assembly tools for the next-generation
sequencing reads adopt the de Bruijn graph approach (Butler et al.,
2008; Chaisson et al., 2009; Li et al., 2010; Peng et al., 2010;
Pevzner et al., 2001; Simpson et al., 2009; Zerbino and Birney,
2008) in which a vertex represents a unique length-k substring called
k-mer and an edge connects vertices u and v if and only if u and v
appear consecutively in a read. Each read is represented by a path
of k-mers in the de Bruijn graph. After error detection and removal,
a simple path in the de Bruijn graph represents a contig.

There are three major problems in this approach (Peng et al.,
2010):

(a) Incorrect k-mers: Sequencing errors introduce many incorrect
k-mers (vertices) that make the de Bruijn graph complicated.

(b) Gap problem: When k is large, especially in regions with lower
sequencing depths, some k-mers (i.e. vertices, also edges, in
the de Bruijn graph) are missing.

(c) Branching problem: Due to repeat regions or erroneous
reads, many branches are introduced in the de Bruijn graph
especially when k is small.

For Problem (a), some of these errors can be removed by the
topological structure of the graph. For the remaining errors, based
on the assumption of uniform sequencing depth and the observation
that the multiplicity of an erroneous k-mer is usually smaller than
that of a correct k-mer, existing tools use a simple threshold to either
prune contigs if the contigs are formed by k-mers of low multiplicity
[e.g. Velvet (Zerbino and Birney, 2008; Zerbino et al., 2009) and
Abyss (Simpson et al., 2009)] or directly remove k-mers with low
multiplicity [IDBA (Peng et al., 2010) and EULER-SR (Chaisson
and Pevzner, 2008)]. Note that this also solves some of the branching
problems [Problem (c)] due to incorrect k-mers.

For Problems (b) and (c), using a small k will induce more
branches whereas using a large k will result in more gaps.
Most existing tools [e.g. Velvet (Zerbino and Birney, 2008) and
SOAPdenovo (Li et al., 2010)] just pick an appropriate k, some
intermediate value, to balance the two problems. On the other hand,
the IDBA assembler (Peng et al., 2010) provides a better solution
which, instead of using a single k, iterates from k =kmin to k =
kmax. At each iteration, the constructed contigs are used as reads
for the next iteration. These contigs carry the k-mers of the current
iteration, which may be missing in the next iteration, to the next
iteration, thus solving some of the gap problems. It then relies on
larger k to resolve the branches for the repeat regions.
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However, when applying to single cell or metagenomic
assembling, highly uneven sequencing depth aggravates these
problems further that affect the performance of these tools
substantially due to the following issues. Issue (A): erroneous
vertices and branches in high-depth regions; Issue (B): gaps in
low-depth short repeat regions.

Problems (a) and (c) due to Issue (A):
Due to highly uneven sequencing depth, the assumption of an
incorrect k-mer having lower multiplicity is not valid. Those
incorrect ones in the high-depth regions may even have higher
multiplicity than the correct ones in the low-depth regions, thus
simply using a single threshold to remove incorrect vertices will not
work. Setting the threshold too low induces many incorrect vertices
and edges (those in high-depth regions) in the graph. Setting the
threshold too high will remove many correct vertices and edges in
low-depth regions. We remark that there exist some error correction
algorithms for reads/k-mers (Chaisson and Pevzner, 2008; Kelley
et al., 2010; Medvedev et al., 2011), but they do not perform very
well in datasets with very uneven sequencing depths.

Problems (b) and (c) due to Issue (B):
Recall that most existing assemblers do not have a good method to
resolve Problems (b) and (c) probably, except IDBA. Even for IDBA,
in low-depth short repeat regions [For very long repeats (longer
than the whole span of a paired-end read), it is almost impossible to
resolve it.], when k is small, the branching problem makes it difficult
to construct a contig to be passed to the next iteration. When k is
increased, due to the low-depth issue, we still have the missing k-mer
problem (the gap problem).

Velvet-SC (Chitsaz et al., 2011) is the only tool that tries to address
the assembling problem of single-cell sequencing data with very
uneven sequencing depths. Following Velvet, Velvet-SC picks an
appropriate k to balance the gap and the branching problem; and uses
variable thresholds to address problems related to Issue (A). Short
erroneous contigs are filtered iteratively using different thresholds
from low to high sequencing depths based on a global average
of the multiplicity of all k-mers. Its performance is already better
than existing tools designed for even sequencing depth. However,
problems related to Issue (B) are not yet handled. In this article,
we propose an assembler called IDBA-UD for de novo assembly of
reads with uneven sequencing depths that tackles both issues.

To resolve Issue (A), IDBA-UD extends and enhances the idea
of variable thresholds of Velvet-SC (Chitsaz et al., 2011) to filter
out erroneous contigs. To cater for very extreme sequencing depths,
instead of using a global average of the multiplicity of all k-mers,
we adopt variable ‘relative’ thresholds depending on the sequencing
depths of their neighboring contigs based on the idea that short
contigs with much lower sequencing depths than their neighboring
contigs tend to be erroneous For the gap and branching problems,
we follow the approach of IDBA and iterate from a small k to a
large k so that the missing k-mers for large k can be obtained from
contigs constructed in the iterations of small k.

Then we tackle Issue (B) as follows. The problem of Issue (B)
is due to the low-depth short repeat regions such that using small
k, we cannot get the contig out since it is a repeat region and the
branches may be complicated due to the ambiguity of using a small
value of k. When k increases, however, due to the low sequencing
depths some k-mers are missing. Even if we iterate from small k to

large k, this problem of missing k-mers cannot be resolved. So, we
employ the technique of local assembly with paired-end information
to handle these cases. Paired-end reads with one end aligned to
some long confident contigs are grouped together. Local assembly
is performed on the unaligned ends. Since we consider only the read
pairs with one end aligned to the contig, the ambiguity due to small
k is removed. If the insert size is longer than the repeat involved,
it is likely that we can extend the contig over this repeat region,
thus constructing the missing k-mers for large k. Note that this local
assembly step can also help to resolve some branching problems in
high-depth regions too.

To further reduce the size of the de Bruijn graph and to speed up
the assembly process, at every iteration, we conduct an additional
error correction step by aligning the erroneous reads from the high-
depth regions to confident contigs (i.e. with many supporting reads)
which turns out to be very effective.

We compared the performance of IDBA-UD with other
assemblers on data in actual situations when the sequencing depths
are extremely uneven, e.g., with the ratios larger than 100:1.
Experiments on both simulated and real datasets showed that IDBA-
UD produces much longer contigs than existing assemblers with
higher coverage and precision.

2 METHODS
A flowchart of the major steps of IDBA-UD is shown in Figure 1. IDBA-UD
iterates the value of k from kmin to kmax. In each iteration, an ‘accumulated de
Bruijn graph’Hk for a fixed k is constructed from the set of input reads and the
contigs (Ck−s and LCk−s) constructed in previous iterations, i.e. these contigs

Fig. 1. Flowchart of IDBA-UD
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are treated as input reads for constructing Hk . In each iteration, IDBA-UD
also progressively increases the value of depth cutoff thresholds for removing
some low-depth contigs so as to get longer confident contigs (Ck) in Hk .
Error in reads are corrected by aligning the reads to some confident contigs.
Some missing k-mers in reads can be recovered from those contigs (LCk)
reconstructed by local assembling of a small set of paired-end reads with
one end aligned to a confident contig. Information of these missing k-mers
will be passed on to the next iteration through these contigs (LCk) for the
construction of Hk+s. Finally, all outputted contigs are used to form scaffolds
using paired-end reads information.

Algorithm 1 shows the pseudocode of IDBA-UD for assembling a set
of paired-end reads R with insert distance d and SD δ. In the first iteration
when k =kmin, Hk is equivalent to a de Bruijn graph for vertices whose
corresponding k-mers have multiplicity at least m (2 by default) times in
all reads. During all the subsequent iterations, some sequencing errors are
first removed according to the topological structure of Hk , e.g. dead-end
contigs and bubbles [Steps (b) and (c)]. The dead-end contigs (tangling
paths in Hk of lengths shorter than 2k) are likely to be false positives
(Li et al., 2010; Simpson et al., 2009; Zerbino and Birney, 2008). Paths
(bubbles) representing very similar contigs except at one position and with
the same starting vertex and ending vertex are likely to be caused by
an error or a single-nucleotide polymorphism (SNP) and they should be
merged together into one contig (Hernandez et al., 2008; Simpson et al.,
2009; Zerbino and Birney, 2008). When constructing Hk+s from Hk , each
length s+1 path in Hk is converted into a vertex (k+s)-mer and there
is an edge from between two vertices if the corresponding (k+s+1)-mer
appears f (1 by default) times in reads or once in contigs in Ck∪ LCk . In
the following subsections, we will describe the other steps of IDBA-UD in
detail.

2.1 Progressive relative depth
The sequencing depth, ‘depth’ in short, of each simple path (contig) in Hk

(H ′
k which is a copy of Hk is used in Algorithm 1 so as to preserve Hk after the

implementation of this step) is used to remove errors. The ‘depth of a contig’
is the average number of reads covering each k-mer in the contig. Note
that long contigs are usually correct, because long simple paths can unlikely
be formed by erroneous reads; similarly for high-depth contigs which have
supports from many reads. For a contig, whether its length is long or short
and whether its depth is high or low cannot be judged by its absolute values
as the length of a contig depends on the value of k and the depth of a contig
depends on the depths of its neighboring contigs (neighboring contigs can
be identified by their adjacency in the de Bruijn graph). Even though wrong
contigs in highdepth regions may have higher depths than correct contigs
from low-depth regions, ‘short’ (<2k) and ‘relatively low depth’ (less than
a fraction β of its neighboring contigs’ average depth) contigs are likely to
be erroneous and can be removed.

There is still a risk of removing short and relatively low-depth correct
contigs because some relatively low-depth correct contigs with high-depth
neighbors may be broken into short contigs by some wrong contigs (as
branches in Hk). Based on the observation that these short and relatively
low-depth correct contigs usually have higher depths than the short wrong
contigs, we can filter out these wrong contigs first by increasing the depth
cutoff threshold progressively from low to high. After the wrong contigs or
branches are removed by a low-depth cutoff threshold, the relative low-depth
correct contigs will be linked together to form long confident contigs which
will be considered as reads for the next iteration.

The key idea to consider the depth progressively and relatively is shown in
Algorithm 2. T (c) represents the depth of contig c and Tneighbor(c) represents
the mean depth of c’s neighboring contigs. The filtering depth cutoff threshold
t is increased by a factor α progressively (α is ∼10%). A geometric increase,
instead of absolute increase (as used in Velvet-SC), in the depth cutoff
threshold value improves implementation efficiency because the threshold
difference is more sensitive at the low-depth values than the high-depth
values. In each iteration, short contig c is removed if its depth T (c) is

lower than the minimum of cutoff threshold t and the relative threshold
β*Tneighbor(c) where β is in the range of 0.1–0.5.

Algorithm 1 IDBA-UD(R, d, δ):
1 Pre-Error-Correction (optional)
2 Repeat from k :=kmin to kmax with step s

(a) If k =kmin, then construct Hk from R
else construct Hk from Hk−s and R∪Ck−s∪ LCk−s

(b) Remove dead-ends with length <2k
(c) Merge bubbles
(d) H ′

k := Hk

(e) Progressive-Relative-Depth(H ′
k , k)

(f) Get all potential contigs Ck of H ′
k

(g) Error-Correction(Ck , R)
(h) LCk := Local-Assembly(Ck , R, d, δ)

3 Construct scaffolds
4 return Ckmax and scaffolds

Algorithm 2 Progressive-Relative-Depth(G, k):
1 t :=1
2 repeat
3 for each contig c in G
4 if len(c)<2k and T (c)< min(t, β*Tneighbor(c))
5 remove c from G
6 t := t * (1+α)
7 until t t > maxc∈G T (c)

2.2 Local assembly
IDBA makes use of the contigs (containing the information of some missing
k-mers for larger k) constructed in each iteration for the construction of the
de Bruijn graphs of larger k. These missing k-mers may not exist in any of
the reads but they might help to fill the gaps in the de Bruijn graphs for
larger k. This approach still has a limitation that not all the missing k-mers,
i.e. contigs containing these k-mers, can be constructed (so not all the gaps
can be filled) because of branches. The main contribution of local assembly
is to construct these contigs for the missing k-mers, especially in the low-
depth regions, based on the information of paired-end reads to eliminate the
branches introduced from other parts of the genome.

We shall illustrate this main idea of local assembly through an example
(Fig 2). Let us consider the construction of a de Bruijn Graph for k =3, based
on two reads, ...AACT and ACTG..., we have a simple path connecting the
3mers,AAC,ACT and CTG. IDBAcan reconstruct the missing 5merAACTG
(not appeared in any reads) by forming a simple path containing it. However,
as given in Figure 2, when ACT is a length-3 repeat in the genome (the
repeat regions are apart by more than the insert distance) and there are reads
covering the region ...TACTT... containing the other repeat. The 3mer ACT in
the de Bruijn graph for k= 3 now has two in-branches and two out-branches
(refer to the left diagram of Figure 3 where vertex v represents the 3mer ACT;
vertices u, w, u′ and w′ are for 3mersAAC, CTG, TAC and CTT, respectively).
Under this situation, even when k is increased to 4 and 5 in IDBA (this part
of graph will be disconnected in H4 and H5), the missing critical 5mers

Fig. 2. Example of reconstructing missing k-mer in local assembly. ACT is
a repeat region in the genome and no reads containing AACTG or TACTT
for resolving repeat branches. In local assembly, ACT is no longer a repeat
so that a simple path (local contig) covering AACTG can be reconstructed
from local reads
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Fig. 3. Example of resolving repeats by iteration from k to k+1. The repeat
region is a single k-mer, uvw and u′vw′ appear in the genome. After the
iteration, repeat v is resolved

AACTG cannot be reconstructed because of the branches. However, when
considering the de Bruijn graph when k =3, IDBA-UD will align the paired-
end reads to the contig ACGATCGTAGCTGA (Fig. 2) whereas the reads of
the other ends covering the repeat regions will only be ...AACT and ACTG...
(reads covering the other repeat region ...TACTT... are not involved because
they are far away). Thus, local assembly (by considering the reads locally)
can produce a simple path containing the critical 5mer AACTG to resolve
branches as if there were no repeats.

Algorithm 3 Local-Assembly(C, R, d, δ ):
1 Remove contigs shorter than 2l from C
2 Align reads in R to contigs in C
3 For each (r,s)∈R
4 if r uniquely aligned to last d+3δ bases of c, Rc :=Rc∪ {s}
5 if r uniquely aligned to last d+3δ bases of crc, Rrc

c :=Rrc
c

∪ {s}
6 For each c∈C
7 LCc := IDBA({last d+3δ bases of c} ∪Rc

8 LCrc
c := IDBA({last d+3δ bases of crc} ∪Rrc

c
9 return ∪c∈G(LCc∪ LCrc

c )

Let Ck be the set of contigs (simple paths) in Hk . The set of paired-end
reads Rc are those with one read aligned with the ends of each long contig
c (with length at least twice of read length) in Ck (crc stands for the reverse
complement of contig c). The other unaligned ends of these aligned paired-
end reads, which would cover the genome regions extended about an insert
distance beyond each end of a long contig, are extracted separately. Assume
the insert distances of paired-end reads satisfy the normal distribution N(d,δ).
IDBA-UD groups the last d+3δ bases of c/crc and Rc/Rrc

c together and
then locally assembles them into the set of local contigs LCk using IDBA
[Algorithm 1 without Steps (e), (g) and (h)] as shown in Algorithm 3. Since
those reads which are far away from the contig c will not be mixed up with
these unaligned ends, the contig c and these unaligned ends (reads) of Rc

can be used to construct a smaller and simpler de Bruijn graph whose simple
paths (represented by the set of contigs LCk) might reconstruct some of the
missing k-mers and be considered as reads for the next iteration. Thus, the
contigs can be extended longer and longer at each iteration. The expected
number of resolved branches can be computed by Theorem 3 (Appendix).

2.3 Error correction
To reduce the errors in reads, error correction on some erroneous bases
is performed based on the alignment between reads and confident contigs.
Errors in reads are corrected only if they can be aligned to contigs with certain
similarity, say 95%. The reads which can be multi-aligned to different contigs
will not be considered for corrections. This approach of error correction is
especially effective for high-depth regions because the confident contigs are
well-supported by many reads.

A position of a contig is labeled as ‘confirmed’ if one base type appears
over 80% in all reads aligned to that position. Each read, aligned to a contig
region with all positions confirmed and the number of different bases no >3,
will be corrected according to the confirmed bases.

A pre-error-correction step for improved efficiency can be used to remove
errors in high-depth regions as the first step in IDBA-UD if the sequencing
depths are extremely uneven. A medium k-value and filtering threshold will

be used to assemble reads to form contigs and errors in reads are corrected
based on its alignment with the output contigs.

2.4 Scaffold
The reads are finally aligned to contigs so as to build a scaffold graph in
which each vertex u represents a contig and each edge (u, v) represents the
connection between u and v with a support of >p (3 by default) paired-end
reads. After the scaffold graph is built, scaffold algorithm (Li et al., 2010)
will be applied to further connect contigs.

3 RESULTS
To evaluate the performance of our algorithm, experiments (All
experiments were done on a machine with 8-core 2.40 GHz Intel
CPU and 144 GB memory. The tested assembler was run with
multiple threads, if it supports.) are carried out on several datasets
with different properties. Results on existing general purpose
assemblers like Velvet (Zerbino and Birney, 2008), SOAPdenovo
(Li et al., 2010), IDBA (Peng et al., 2010) and special purpose
assemblers like Velvet-SC (Chitsaz et al., 2011), Meta-IDBA (Peng
et al., 2011) were compared. Different k-values were tried for each
assembler and the result with best performance are shown and
compared.

Two most important statistics, N50 and coverage are calculated to
evaluate the contiguity and completeness of assembly results. N50 is
the length of the longest contig such that all the contigs longer than
this contig cover at least half of the genome being assembled (Earl
et al., 2011). Coverage is the proportion of the genome being covered
by output contigs. In this article, only correct contigs are considered
in the calculation of N50 and coverage. A contig is considered as
correct if it can be aligned to the genome reference by BLAT (Kent,
2002) with 95% similarity. For correct contigs, the substitution errors
are computed by comparing the alignment between contigs and
genome reference. For unaligned contigs, the number of contigs
and the number of bases are recorded for comparison.

3.1 Error correction
The performance of our error correction algorithm is assessed
by correcting the simulated reads sampled from Lactobacillus
delbrueckii genome (∼1.85 Mb). The simulated dataset contains
1.85 million length-100 reads (100×) uniformly sampled from
the reference with 1% error rate. The error correction algorithm
was executed on this dataset with output contigs of IDBA with
k =60 (kmin =kmax in this case). The correction result is shown
in Table 1. There are 1 856 822 error bases in the dataset. Our
algorithm corrected 1 627 727 bases with 1 626 929 (99.95%) being
true positive. Note that our target of error correction is to reduce the
errors without introducing other errors. The remaining erroneous
reads either contain too many errors to be aligned to contigs or are
from those regions which cannot be assembled correctly. This high-
precision and low-sensitivity error correction algorithm is suitable

Table 1. Error correction result on simulated 100× length-100 reads of
L.delbrueckii (∼1.85 Mb) with 1% error rate

No. of errors No. of corrected No. of TP No. of FP

1 856 822 1 627 727 1 626 929 (99.95%) 798 (0.05%)
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for IDBA-UD, because the remaining errors could be handled
by other means in the later iterations. Note that error correction
which simplifies the graph for next iterations improves efficiency
tremendously.

3.2 Low depth assembly
Lactobacillus plantarum (∼3.3 Mb) was used as genome reference
for simulating low-depth dataset. 10× length-100 paired-end reads
were simulated for testing. The assembly results of IDBA-UD,
Velvet, SOAPdenovo and IDBA are shown in Table 2.

IDBA-UD has the longest N50 (36 523), which is several folds
of the N50 of Velvet, SOAPdenovo and IDBA (1584, 13 761 and
8350). IDBA-UD also has the highest coverage (99.56%), which is
higher than the coverage of Velvet, SOAPdenovo and IDBA (98.36,
98.09 and 98.52%). IDBA-UD and IDBA have the least number
of erroneous bases. Only 10 contigs (4437 bases) constructed by
IDBA-UD and 3 contigs (3301 bases) by IDBA cannot be aligned to
the genome reference, compared with 1079 contigs (112 505 bases)
by SOAPdenovo and 5 contigs (15 921 bases) by Velvet. Among
aligned contigs, all assemblers have similar substitution error rate.

IDBA-UD also constructed the longest scaffolds with N50 being
194 322, which is nearly twice of N50 of scaffolds constructed by
other assemblers. Although N50 of scaffolds generated by different
assemblers are similar, the coverage of scaffolds generated by
all assemblers is much lower than that of contigs except IDBA-
UD. IDBA-UD made the least misassembly during the scaffolding
process, because of having longer and more accurate contigs.

In general, IDBA-UD achieved its best performance by iterating
k from 20 to 100, whereas Velvet, SOAPdenovo and IDBA had
best performance when k is set to a small value (21, 31 and 20–40,
respectively). Since, the local assembly procedure can reconstruct
missing k-mers, IDBA-UD can iterate k to a large value to construct
very long contigs. The other assemblers are not able to reconstruct
missing k-mers so that a reasonably small k is used to balance the
gaps and branches problem. The running time and memory cost are
more or less the same among all assemblers.

3.3 Local assembly
The expected number of resolved branches (Theorem 3 in Appendix)
by IDBA-UD, IDBA and the actual numbers by all assemblers
for different repeat lengths k are shown in Table 3. We ran all
assemblers with a specific k (kmax) and measured repeats with length
(k–10,k). Since SOAPdenovo and Velvet cannot handle even values
of k due to the palindrome problem, 29, 39 etc. are considered in
Table 3. The number of resolved branches by IDBA-UD is slightly
smaller than the expected number because some of the (k+2)-mers

Table 3. Expected numbers of resolved branches by IDBA-UD, IDBA and
the real number of all assemblers on the same dataset in Table 2

k 29 39 49 59 69 79 89 99

All branches 5509 2117 1019 618 375 288 195 149
IDBA-UD (expected) 5507 2115 1018 616 373 284 190 142
IDBA-UD 5328 2025 962 557 331 223 129 98
IDBA (expected) 5499 2103 1000 584 329 215 103 33
IDBA 5298 1986 933 513 280 156 65 32
SOAPdenovo 5259 1861 795 282 41 27 20 0
Velvet 3515 1356 617 219 35 27 20 0

are removed as dead-end. As the k-value increases, the number
of resolved branches drops and the number of wrong contigs also
increases because of the missing (k+2)-mers. Comparing with other
assemblers, IDBA-UD can resolve more repeats by increasing k and
gets longer contigs.

3.4 Single cell assembly
Two single-cell short read sequencing datasets; Escherichia coli
(lane 1) and Staphylococcus aureus (Chitsaz et al., 2011; http://bix
.ucsd.edu/projects/singlecell/) were used to test the performance of
IDBA-UD, SOAPdenovo, Velvet and Velvet-SC (Velvet-SC was run
after EULER error correction as the authors suggested. The assembly
result we presented is slightly different from that in Velvet-SC paper,
because we calculated the N50 for aligned contigs rather than all
contigs.). Genome sequences of E.coli str. K-12 substr. MG1655
and S.aureus subsp. aureus USA300_FPR3757 were downloaded
from NCBI and were used as reference for validation. The statistics
of the assembly results of different assemblers are summarized in
Tables 4 and 5.

3.4.1 De novo assembly of E.coli According to (Chitsaz et al.,
2011), the average sequencing depth of single-cell sequencing data
of E.coli is ∼600× and the reads are sampled very unevenly.
For contigs, SOAPdenovo and Velvet have similar N50 (6428 and
7679); Velvet-SC has the second best N50 (34 454), as it considers
the property of uneven depth to remove errors; IDBA-UD has
the longest N50 (82 007), as it considers uneven relative depth
to remove errors and uses local assembly to reconstruct missing
k-mers in low-depth regions. The contigs constructed by IDBA-UD
also have the highest coverage. IDBA-UD and Velvet-SC have the
least number of substitution errors. All assemblers constructed some
contigs cannot be aligned to the reference. Some of them are really
misassembled contigs, but the alignment of reads against contigs and

Table 2. The assembly results on simulated 10× lenght-100 reads of L.plantarum (∼3.3 Mb) with 1% error rate

k Contigs Scaffolds Time (s) Mem (M)

No. N50 Max Cov Sub.err Err no. No. N50 Max Cov Sub.err Err no.
len (%) (%) (len) len (%) (%) (len)

IDBA-UD 20–100 210 36 513 201 860 99.56 0.0225 104 437 83 194 322 406 269 99.55 0.0218 53 784 63 432
SOAPdenovo 31 3346 1584 8691 98.36 0.0572 1 079 112k 147 121 214 246 514 92.50 0.0483 1 087 283k 31 852
Velvet 21 473 13 761 48 489 98.09 0.0323 515k 111 111 871 225 438 96.81 0.0291 667k 43 526
IDBA 20–40 672 8350 37 391 98.52 0.0164 33 301 60 119 931 308 798 97.55 0.0161 39 420 24 414
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Table 4. The assembly results on real single-cell sequencing data of E.coli (∼4.64 Mb)

k Contigs Scaffolds Time (s) Mem (M)

No. N50 Max Cov Sub.err Err no. No. N50 Max Cov Sub.err Err no.
len (%) (%) (len) len (%) (%) (len)

IDBA-UD 40–100 187 82 007 224 018 95.01 0.0017 87 347 148 98 306 224 018 95.00 0.0016 73 346 35 3.2
SOAPdenovo 75 6008 6428 50 965 92.42 0.0421 693 335 4419 25 244 118 128 86.49 0.0448 588 653 30 19
Velvet 45 1736 7679 68 395 92.69 0.0095 160 266 1707 7795 68 395 92.59 0.0095 154 272 91 11
Velvet-SC 55 372 34 454 157 931 92.74 0.0019 78 279 46 8.3

The read length is 100, insert distance is ∼215 and the average depth is ∼600×.

Table 5. The assembly result on real single-cell sequencing data of S.aureus (∼2.87 Mb)

k Contigs Scaffolds Time (s) Mem (M)

No. N50 Max Cov Sub.err Err no. No. N50 Max Cov Sub.err Err no.
len (%) (%) (len) len (%) (%) (len)

IDBA-UD 60–100 122 87 502 175 236 94.46 0.0027 14 247 78 100 895 308 777 93.54 0.0019 17 271 29 3.8
SOAPdenovo 95 1005 12 214 92 978 96.63 0.0067 791 220 696 22 632 149 602 91.44 0.0072 746 364 11 12
Velvet 55 520 15 800 67 677 94.14 0.0043 7999 516 16 038 67 677 94.13 0.0042 77 100 135 15
Velvet-SC 55 322 29 719 221 773 93.12 0.0042 43 312 224 41

The read length is 100, insert distance is ∼265, and the average depth is ∼2300×.

reference showed that some non-aligned contigs are from regions
with structure variations.

After scaffolding, all assemblers produced longer scaffolds and
lower coverage, but the difference between contigs and scaffolds
is not much except SOAPdenovo. SOAPdenovo increased the N50
from 6428 to 25 244, but the coverage dropped from 92.42% to
86.49%. This means that the uneven depth of single cell assembly
makes the scaffolding very difficult so that assemblers either cannot
construct long scaffolds or make many mistakes in scaffolding
procedure. Since IDBA-UD produced very long contigs, although
scaffolding did not connect many contigs, the scaffolds generated
by IDBA-UD have the longest N50 and highest coverage.

3.4.2 De novo assembly of S.aureus The sequencing depth of
single-cell sequencing data of S.aureus is ∼2300×, much higher
than that of E.coli. SOAPdenovo and Velvet performed better
for dataset with higher sequencing depth. The contig N50 of
SOAPdenovo and Velvet became 12 214 and 15 800, about twice of
that of E.coli. IDBA-UD and Velvet-SC had similar performance as
before, and handle reads with uneven depth quite well. Generally,
higher sequencing depth does not affect the quality of assembly
result much. The scaffolding also increases N50 and reduces
coverage. The substitution error rates are very low for all assemblers
for this high sequencing depth.

SOAPdenovo is the fastest assemblers among four assemblers
IDBA-UD took about twice the time of SOAPdenovo to perform
de novo single cell assembly. The memory cost of IDBA-UD is
much less than the others, as it did the filtering on k-mers. Depending
on the nature of assemblers, different assemblers achieved its best
performance with different k-values. SOAPdenovo got its best
performance by using relatively large k-values (75 and 95) to reduce
errors in high-depth regions and introducing more gaps problem at
the same time It then relies on paired-end information to connect

contigs to form scaffolds. Therefore, it produced more and shorter
contigs and more gaps in its scaffolds than the others. Velvet
preferred a relatively small k-values (45 and 55), probably because
it contains a very sophisticated algorithm to remove the errors in
de Bruijn graph. Velvet-SC had best performance with a moderate
k-value (55) and relies on iteratively removing low-depth erroneous
contigs to form long contigs. IDBA-UD is able to iterate k-values
from small to large to build a de Bruijn graph with less gaps and less
branches and obtain the best performance, through local assembly
producing missing k-mers and iterate depth for reducing the errors.

3.5 Metagenomic assembly
3.5.1 De novo assembly of simulated metagenomics data To
evaluate the performance of IDBA-UD on metagenomic data,
we considered a simulated dataset with extremely uneven depth.
This dataset was synthesized by combining simulated reads of
three species L.plantarum (∼3.3 Mb), L.delbrueckii (∼1.85 Mb)
and Lactobacillus reuteri F275 Kitasato (∼2 Mb) from the same
genus. Length-100 reads were sampled from these three species
with sequencing depth 10× (low depth), 100× (moderate depth)
and 1000× (high depth), respectively, with 1% error rate. The
simulated paired-end reads have an insert distance following normal
distribution N(500, 50). IDBA-UD, SOAPdenovo, Velvet and Meta-
IDBA were executed on this simulated metagenomic sequencing
dataset. Since the depth is highly uneven, the Pre-Error-Correction
of IDBA-UD was activated to remove errors. The experiment results
are showed in Table 6. In addition to the statistics we presented
before, the sequencing depth of each species was considered for
comparison.

SOAPdenovo and Velvet did not perform well on this simulated
metagenomic dataset. N50 of SOAPdenovo and Velvet are only 461
and 418, respectively. The contigs constructed by SOAPdenovo and
Velvet covered most regions of moderate-depth species (95.39% and
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Table 6. The assembly result on simulated metagenomic dataset of L.plantarum (∼3.3 Mb), L.delbrueckii (∼1.85 Mb) and L.reuteri F275 Kitasato (∼2 Mb)

k Contigs Scaffolds Time (min) Mem (G)

No. N50 Cov 10× 100× 1000× Err no. No. N50 Cov 10× 100× 1000× Err no.

(%) (len) (k) (%) (len) (k)

IDBA-UD 20–100 546 44 879 99.15 99.31 98.48 99.52 94 335 104 696 97.80 99.23 95.90 97.21 1069 35 6.9

SOAPdenovo 45 16 266 461 79.57 95.45 95.39 39.40 1 347 166 10 036 1356 74.01 83.43 95.37 39.28 1 404 641 30 18

Velvet 45 12 018 418 72.73 94.66 95.24 16.66 6 200 710 11 976 418 72.58 94.34 95.24 16.66 6 219 724 91 18

Meta-IDBA 20–100 2636 4588 89.62 85.29 86.96 99.09 127 292 46 6.2

The sequencing depth of these species are 10×, 100× and 1000×, respectively. The read length is 100, error rate is set to 1% and the insert distance follows normal distribution
N(500, 50).

Table 7. The assembly results on human gut microbial short read data (SRR041654 and SRR041655) from NCBI

k Contigs Scaffolds Gene no. Time (min) Mem (G)

No. N50 Max Total No. N50 Max Total
len length len length

IDBA-UD 20–100 39 221 18 658 39 221 18 658 37 512 20 737 673 651 98 243 412 66 298 138 11
SOAPdenovo 55 99 213 2066 113 678 92 059 177 93 961 4575 319 705 90 788 489 41 093 61 31
Velvet 55 33 165 3476 171 410 65 630 428 30 419 5065 358 885 65 887 174 40 914 176 35
Meta-IDBA 20–100 20–100 19 978 7710 325 768 48 693 49 12

The read length is 100 and the insert distance is 260.

95.24%) and low-depth species (95.45% and 94.66%) but a small
portion of high-depth regions (39.40% and 16.66%). It is because
they make a tradeoff between low-depth and high-depth regions
and cannot handle them together. SOAPdenovo and Velvet have
the best performance in N50 and coverage when k =45. Small k is
chosen because the genome size of low-depth species (∼3.3 Mb) is
larger than high-depth species (∼2 Mb). In fact, their performance
for k =55 are similar except that the coverage of lowdepth species
decreases, the coverage of moderatedepth species remains the same
and the coverage of highdepth species increases.

Meta-IDBA designed for metagenomic assembly iterates k from
small to large to capture both low-depth and high-depth regions.
At each iteration, missing k-mers in low-depth and moderate-depth
regions introduce fragmentation in the assembly result. Thus, Meta-
IDBA outperforms SOAPdenovo and Velvet, but performs worse
than IDBA-UD. The contigs constructed by Meta-IDBA covered
>99% of the regions in high-depth species, slightly <90% of the
regions in lowdepth species and moderate-depth species.

As expected, IDBA-UD outperforms SOAPdenovo, Velvet and
Meta-IDBA in all aspects. N50 (44 879) of contigs constructed by
IDBA-UD is ∼10 times of the second best N50 (4588) of contigs
constructed by Meta-IDBA. IDBA-UD also has the best coverage
(99.15%), ∼10% higher than the second highest by Meta-IDBA.
The contigs constructed by IDBA-UD covered almost all the region
of three species, the uneven depth does not affect the assembly
quality of IDBA-UD. Similar to single-cell assembly, scaffolding
in all assemblers produced longer contigs but lower coverage. As
for substitution error rate, IDBA-UD and Meta-IDBA have much
higher accuracy and IDBA-UD constructed the least number of
misassembled contigs. The running time of all assemblers are
similar, but IDBA-UD and Meta-IDBA used about half of memory
as SOAPdenovo and Velvet.

3.5.2 De novo assembly of human gut microbial short read
data Real human gut microbial sequencing data were used to
assess the performance of IDBA-UD. The datasets (SRR041654
and SRR041655) were downloaded from NCBI for assembly. The
reads were generated by Illumina Genome Analyzer II with read
length 100 and insert distance 260. IDBA-UD, SOAPdenovo, Velvet
and Meta-IDBA were compared with this dataset (The Pre-Error-
Correction of IDBA-UD was activated.) Since there is no reference,
we used the largest total contig size of all assemblers as the estimated
genome size (98 407 199) for N50 calculation, and did not analyze
the completeness of assembly by comparing genome coverage.
MetaGeneAnnotator (Noguchi et al., 2008; only complete genes
predicted by MetaGeneAnnotator are considered as recovered) was
applied to the output of each assembler to predict the number of
genes recovered. The statistics of assembly results are summarized
in Table 7.

The contigs of SOAPdenovo and Velvet have similar N50,
whereas SOAPdenovo produced much more contigs than Velvet.
The total contig size of SOAPdenovo is 92 059 177. Meta-IDBA
produced the smallest number of contigs, but N50 of contigs
constructed by Meta-IDBA is larger than SOAPdenovo and Velvet.
According to the analysis of the assembly result of simulated data,
it is probably because Meta-IDBA reconstructed most of the high-
depth regions but missed some lowdepth regions. IDBA-UD has the
largest total contig size and the highest N50 (18 658). The contigs
constructed by IDBA-UD contain the largest number of predicted
genes (66 298), which is 50% more than that of SOAPdenovo and
Velvet. The results reveal that IDBA-UD can assemble metagenomic
data better than all the other assemblers. The running time of IDBA-
UD is between SOAPdenovo and Velvet. The memory cost of
IDBA-UD and Meta-IDBA is also about half of SOAPdenovo and
Velvet.
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Table 8. The assembly results on simulated metagenomic datasets in different taxonomic levels

k Contigs Scaffolds

No. N50 Cov 10× 100× 1000× Err no. No. N50 Cov 10× 50× 250× Err no.
(%) (len) (k) (%) (len) (k)

Genus
IDBA-UD 20–100 713 177 198 94.90 93.16 96.06 95.52 681 394 318 240 87.72 81.41 89.66 92.13 14 593
SOAPdenovo 45 20 427 6438 80.40 85.87 89.14 64.76 18 424 12 938 155 694 72.13 69.16 84.25 59.97 551 883
Velvet 45 21 904 660 91.69 91.72 94.96 88.70 1 334 179 21 904 660 91.69 91.72 94.96 88.70 1 334 179
Meta-IDBA 20–100 2283 26 504 86.38 74.25 90.20 95.19 143 551
Family
IDBA-UD 20–100 904 163 720 98.98 97.96 99.28 99.94 635 475 393 540 96.45 96.58 98.28 95.06 8119
SOAPdenovo 45 23 908 6673 88.74 93.65 98.44 71.54 19 529 14 449 160 345 80.73 73.21 97.59 70.37 4 191 160
Velvet 45 24 785 795 95.48 93.03 97.82 95.83 1 208 171 24 785 795 95.48 93.03 97.82 95.83 1 208 171
Meta-IDBA 20–100 3014 22 311 80.53 66.38 88.13 89.96 2 331 057
Class
IDBA-UD 20–100 488 236 177 99.64 99.30 99.94 99.62 318 253 849 606 96.42 95.30 98.76 97.59 360
SOAPdenovo 45 20 111 7319 90.34 95.28 99.60 70.97 15 724 11 610 329 675 85.84 84.65 99.57 69.98 290 601
Velvet 45 20 736 766 96.27 94.49 99.30 94.79 1 025 148 20 736 766 96.27 94.49 99.30 94.79 1 025 148
Meta-IDBA 20–100 2657 43 332 90.19 80.76 96.74 94.41 86 398

For each level, five test cases with three randomly selected species are generated for testing. The depths of three species are set to 10×, 50× and 250×, respectively. The read length
is 100, error rate is set to 1% and the insert distance follows normal distribution N(500, 50). The values presented in this table are average results offive test cases.

3.5.3 De novo assembly of simulated metagenomic data with
different similarity level To show the performance of IDBA-UD
on data with different similarity level, we constructed three kinds
of datasets with genomes in same genus, family and class. For
each similarity level, five test cases with three species are selected
randomly and sampled with low-depth (10×), middle-depth (50×)
and high-depth (250×) regions. The average of assembly results are
shown in Table 8.

In general, all assemblers have the best performance on dataset
in class level and the worst performance on dataset in genus
level. Contigs and scaffolds generated by IDBA-UD have the
largest N50 and highest coverage in all three kinds of datasets.
Velvet generated the second highest coverage, but it produced the
shortest N50. The scaffolds generated by SOAPdenovo have the
second largest N50, but they covered the least portion of genomes.
Meta-IDBA is somehow in the middle, because it is designed to
handle similar subspecies problem rather than different expression
levels. In the assembly results of IDBA-UD, all species got similar
coverage. All the other assemblers generated high coverage for
middle-depth (50×) species but lower coverage for low-depth and
high-depth species, because they balanced the gap problems in
low-depth species and high-depth species and benefited the middle-
depth species Consistent with previous experiments, IDBA-UD
outperformed all the existing assemblers in sequencing data with
highly uneven depth in all these experiments.

4 DISCUSSION AND CONCLUSION
In this article, we proposed a new assembler IDBA-UD, an
extension of IDBA, to assemble short sequencing reads with highly
uneven depth. Besides iterating k from small to large, IDBA-
UD reconstructs missing k-mers by local assembly and removes
errors by iteratively removing low-depth contigs. The experiment
results on both simulated and real datasets showed that IDBA-UD

outperformed all existing assemblers in assembling datasets with
highly uneven depth. For metagenomic data, there are more common
k-mers between genomes from subspecies of the same species than
genomes from different species. This information is used in Meta-
IDBA for assembling metagenomic data. As a future work, we
should study how to integrate this information in IDBA-UD for
better performance.
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APPENDIX
Branches may be caused by erroneous reads (k-mers), variations
(SNPs) or repeats. The branches caused by erroneous k-mers can
be solved by the graph structure, such as dead-end or bubbles. The
branches caused by a length-k repeats can be resolved if we have
a (k+2)-mers covering the repeat, which can be obtained if the
corresponding (k+2)-mers covering the repeat are sampled in reads
or the (k+2)-mer is obtained by local assembly.

Figure 3 shows an example of Hk and Hk+1 for resolving a length-
k repeat v and its associated branches. Since it is impossible to
resolve these branches by Hk itself, reads and contigs are considered
in each iteration from Hk to Hk+1 to resolve them. If the (k+2)-mers
covering repeat v, e.g. uvw and u′vw′, exist in reads, these (k+2)-
mers can be used to convert branches to simple paths. If some of
these (k+2)-mers are missing in reads due to low depth or errors,
then local assembly can be used to reconstruct them as shown in
Figure 2.

In this section, we try to calculate the expected number of
branches caused by repeats that can be resolved by (k+2)-mers
which already exist in reads or reconstructed by locally assembly.
Theorem 2 gives the expected number of (k+2)-mers covering a
repeat being sampled f times (applied by IDBA). Theorem 3 gives
the expected number of (k+2)-mers covering a repeat being sampled
f times or reconstructed by local assembly (applied by IDBA-UD).
Thus, the difference between these two expected numbers as given in
Theorems 2 and 3 indicates the expected number of repeats resolved
by local assembly.

Theorem 1. Assume t length-l reads are uniformly sampled from
a length-g genome with error rate e, the probability that a k-mer v
appearing x (g>>x) times in the genome being sampled at least m
times is at least

Pk,m,x =1−
m−1∑
i=0

(
t
i

)
pi(1−p)t−i

where p= (l−k+1)x
g−l+1 ×(1−e)k

Proof. Pr(v is sampled in a read)
≤ Pr(a read containing v is sampled) Pr(v is sampled | a read

containing v is sampled)

= (l−k+1)x

g−l+1
×(1−e)k

The probability that a correct k-mer v appears <m times is at most
m−1∑
i=0

(
t
i

)
pi(1−p)t−i, so the result follows.

Theorem 2. Assume t length-l reads are uniformly sampled from a
length-g genome with error rate e and Rk is the set of repeats with
length k. If the support requirement for resolving a branch is f , then
the expected number of resolved branches Sk from k to k+1 is at
least ∑

r∈Rk

∑
b=Y (r)

Pk+2,f ,x(b)

where Y (r) is the set of the (k+2)-mers covering repeat r in the
genome and x(b) is the number of times that b appear in the
genome.

Proof. To resolve a repeat of length k, a (k+2)-mer appearing
at least f times in the reads is needed and the probability of such
(k+2)-mer is Pk+2,f ,x(b) (Theorem 1).

If reads are localized to a specific region of genome, then the
branches caused by distant repeats may disappear and convert to
simple paths. In this way, local assembly may generate local contigs
which help to resolve branches.

Theorem 3. Assume t length-l reads are uniformly sampled from a
length-g genome with error rate e, Rk is the set of repeats with length
k and LRk is the set of length-k repeats occurring at least twice in
the genome within insert distance. If the support requirement for
resolving a branch is f and IDBA-UD is applied on the data from
k to k+1, then the expected number of resolved branches LSk is at
least

|Rk −LRk |+
∑

b∈LRk

∑
b=Y (r)

Pk+2,f ,x(b)

where Y (r) is the set of the (k+2)-mers covering repeat r in the
genome and x(b) is the number of times that b appears in the genome.

Proof. If a repeat does not appear twice within insert distance,
then it can be resolved by IDBA-UD, i.e. |Rk −LRk | and those
repeats occurring more than once within the insert distance can only
be resolved by the (k+ 2)-mers appearing at least f times in reads
(Theorem 2).
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