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Observational vs Experimental Studies
Terminology

Common Experimental Designs
Simple Statistical Tests

Non-Standard Experimental Designs

Outline




Observational Study
Conditions influencing response not under the control of investigator
Cannot randomly assign treatments
Potential confounding
Cannot infer cause-and-effect relationship

Randomized Experiment

: Can infer cause-and-effect relationship*
Observational vs

Experimental




Choosing a biological system
Balancing physiological relevance, reproducibility, and complexity

Determining hypotheses to be tested
Treatments
Time points

Selecting data to be generated or collected
Determining number of replicates

General Steps to

Experimental
Design




Terminology

Treatment: the procedures being studied

Experimental Unit: unit to which a treatment is applied on
which we wish to make inference

Observational Unit: unit on which a measurement is taken
Response: the outcome that is measured
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Terminology cont.

Experimental Unit vs Observational Unit

= If 1:1 e.u. to 0.u. mapping > standard statistics
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Terminology cont.

Randomization: assigning treatments to experimental units in
a probabilistic manner

Control: Baseline treatment (e.g. placebo)

Confounding: When one factor’s effect cannot be
distinguished from another factor’s effect on response

Goal is to reduce this confounding
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Major
Components of

Experimental
Design

Treatment Structure
Treatments to be studied

Design Structure
Grouping experimental units into uniform blocks

Randomization
Avoid systematic bias
Does not have to be complicated
May not know what factors could be confounding

13



Treatment

Structures

Mock Virus

VS
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e.g. Crop (2 levels) and Location (2 levels) — all 4
combinations observed

Crop 1, Location A Crop 1, Location B

Treatment

Structures cont.

Crop 2, Location A Crop 2, Location B

We can have as many factors as desired for n-way ANOVA,
but not always a good idea




Design Structures

Completely Randomized Design (CRD)
Randomized Complete Block Design (RCB)
Incomplete Block Design

Latin Square Design
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Design Structures

Completely Randomized Design (CRD)

= Treatments applied randomly to experimental units
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Design Structures

cont.

Create sets of groups BEFORE running experiment
Reduces variance

Units within same block expected to have similar responses
(in contrast to units not in the same block)

Used in many design structures
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Experimental units grouped into blocks
Could be similar traits (age, sex, etc.)

Different treatments tested randomly assigned to units in

each block
Design Structures Blocks on one variable
cont.
A B B D A D

D C A C C B

Can also be an incomplete block design



More restrictive than RBD

Blocks on two variables

Total number of blocks is number of treatments

Each treatment appears only once in each row and column

Design Structures

cont.
A B C D
D A B C
C D A B




Replication is needed to establish statistical significance in
any analysis
Increased number of replicates is necessary to guard against loss of

statistical significance due to sample-to-sample variation or other
technical problems

Balance between cost and quality data
Different types of replicates capture different sources of
variability
Technical/lnjection
Biological
Consider adding more replicates per group rather than
a new group to increase statistical power in discovery phase

Statistical power is quantity typically calculated to
help determine the number of replicates that should be run
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Why Bother?

Scientifically Meaningful Effect

Want enough samples to detect a
scientifically meaningful effect

Money

Undersized study wastes resources
by not having capacity to produce
useful results

Oversized study uses more
resources than necessary

Ethical issues when using live
subjects (humans, etc.)

Grant reviewers are looking for
sample size and power
calculations

LET ME
INTEODUCE You
TO MY LATEST
SIGNIFICANT
OTHERS!

IT WAS GETTING HARDER AND HARDER TO
FIND A TRULY MEANINGFUL RELATIONSHIP
AT THE MEDICAL JOURNAL HAPPY HOUR.

nny.blogspot.com

Statistically-fu
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Hypotheses

Null Hypothesis (what we assume to be true)
HO
“There is no difference between treatments”
Alternative Hypothesis (what we want to show)
Ha
“There is a difference between treatments”

“Innocent until proven guilty”

Assume H, is true until/lunless we have enough evidence in the data
in favor of H,

23



Hypotheses cont.

H, & H, stated in terms of some population parameter, p
Different types of hypotheses, e.g.

Note:

“=" sign always included in H,
H, & H, must contradict each other

24



The probability that an observed outcome is due to chance
High p-value: more likely to be due to chance
Low p-value: less likely to be due to chance

Threshold often to be 0.05

P-value > 0.05 -> fail to reject the null hypothesis
P-value < 0.05 -> Reject the null hypothesis
NEVER accept the null hypothesis
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Rejecting H, in favor of H, does not guarantee that H, is true
despite very strong evidence

For any hypothesis test, there are 2 kinds of errors we can

make
. Decision
Errors in _ , ,
Hypothesis Fail to reject H, Reject H,
Testing H, | Correct decision | Type | error = a
(false positive)
Truth .
Hp, Type |l error Correct decision
(false negative) (power)




Errors in

Hypothesis
Testing cont.

By construction, hypothesis testing limits the rate of Type |
errors (false positives) to a significance level, a
We choose ahead of time what significance level we will test at

Multiple tests on different attributes of the same data require an
adjustment in order to preserve the significance level

« E.g. testing the salmon for levels of multiple chemicals requires
an adjustment

* The more tests we do, the more likely we are to find a false
positive

Type Il error rate (B) is a function of sample size, significance
level, & effect size

Trade-off between Type | and Il error rates
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What is Statistical

Power

Statistical Power (1-8) — probability of rejecting the null
hypothesis, when the alternative hypothesis is true

Experimental Design &
Statistical Test(s)

Type 1 Effect . Sample
Error Size VeliElelligy Size

Statistical Power
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Tradeoff between Type 1 and 2 errors
Inversely related

Lower Type 1 error -> Lower power
Holding other factors constant

Typical values: 0.05, 0.1

Type | Error
Experimental Design &
Domain dependent Statistical Test(s)
Type 1 Effect - Sample
Error Size LY Size

Statistical Power




Effect Size and

Variability

Effect Size — desired detectable difference (if a difference
exists)

Variability — variability of the parameter being estimated
If evaluating difference in means - variance of values from same
group

Ratio of Effect Size/Variability determines power
More variability = less power
Smaller effect size - less power

Typical values?
Determined by data and/or domain knowledge
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Sample Size and

Power

Usually the quantities we want to estimate
If | have X number of samples, what is my power?
How many samples do | need for 80% power?

Most domains, we have one estimate of variability = one
power calculation

Biology ‘omics data often have multiple response variables -
multiple power calculations

Experimental Design &
Statistical Test(s)

Type 1 Effect - Sample
Error Size Variability Size

Statistical Power
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Simple Tests

32



= Quantitative Test

* Are there differences in the mean abundance of each biomolecule
between the treatments/groups?

= Qualitative Test

* Are patterns of presence/absence for each biomolecule associated
with treatment/group?

Quantitative vs

Qualitative

16.9 16.2 16.7 16.9 17.2 17.5 17.9
B NA NA NA NA 17.5 16.9 17.3 17.1
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Quantitative Tests

F-test

Ho: g = t1p = Uc
Hy: At least one u; #

Post-Hoc Pairwise Comparisons

Ho:piq = tip (Ua- ttp = 0) Ho: pg = te

Hp:phg # tp Hp:phg # e

p-value p-value

log FC = log™ log FC = log™®
Up Uc

Ho:pp = pe
Hp:pp # U

p-value

log FC = log%
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Assumptions

Assumptions
Independence
Constant variance
Normality

If assumptions not met?
Potentially transform the data
Boxcox transformation
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Response is extreme in comparison to other responses with
similar predictors

Use caution when removing outliers
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Type | vs Type Il error rate

Reduce the Type | error rate with multiple comparisons
analyses

If you run many many tests it is likely that something will be
found significant at 5% threshold (even if it really isn’t)

Bonferroni, tukey, dunnet, etc.

No best procedure, just best for your situation (exploratory or
confirmatory, etc, working with just comparisons to control,
etc., some require to be pre-planned, others are post-hoc)
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Quantitative Tests

cont.

(adjusted) p-values

Using p-value < a 2 < a% Type 1 error rate
Multiple tests - error rate is inflated
Multiple tests for a biomolecule

Method Name Appropriate Comparison ANOVA IMD

Bonferroni Both \/ \/

Dunnett Case-vs-control

Tukey All pairwise

.\/
Holm Both \/ \/
\/
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Qualitative Tests

What if we don’t have enough observations to conduct a
quantitative test?

Determine if proportion of missing values are associated with
treatment group, compared to random chance

Present | Absen | Total

. Treatment |1 4 5
A

251
Treatment |3 1 4

% Missing Observations

L]

10 15 20 25 30 B

Mean Log2 Abundance
Total 4 5
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G-Test

= Determine if proportion of missing values are associated with
treatment group, compared to random chance

= Fisher’s test of independence with correction for small

sample size
Qualitative Tests Label-Free
cont. |
Present | Absen | Total
t
Treatment |1 4 5
A e
Treatment |3 1 4
B
Total 4 5

25.1319 24.2289 42,2588 29.1762 13.2071 36.2543

+J



G-Test

= n 2 3 replicates per treatment group

= Not typically applicable for metabolomics data
* Not applicable for isobaric labeled proteomics data

TRAQ Label-Free

Qualitative Tests

cont.

Missing
Observed

2AA31E 202200 422508, 2. 1762 13,2001 56240 25.1310 24.2280 42 2588 29.1762 13.2071 36.2543




Using Both
Quantitative and

Qualitative
Metrics

ANOVA and then G-test

(A) BALF Dataset (B) Plasma Dataset

ANOVA G-Test ANOVA G-Test

Webb-Robertson et al (2010). Journal of proteome
research.
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Non-Standard

Experimental
Designs

Before you plan your experiment!

Non-independence
Time course
Repeated measures (Mouse litters)
Numerous samples from one soil core

Data not normally distributed
Censored data (survival analyses)
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Non-Standard

Experimental
Designs cont.

If before, after study - standard paired statistics

Pre Treatment

(
(
(
(

e @ @ ©
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Non-Standard

Experimental
Designs cont.

Abundance

Control Group

Abundance
o
l

6 8
Age

1€

Protein_Family Q%6KN2;J3KRPO

1€
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\ETELCEWEVE

Experiments are only as valid as their design

An experiment with proper design can help detect cause-and-effect
relationships

There are quantitative and qualitative tests for analyses
Replication is essential for statistical significance
Seek a statistician before starting an experiment

46



Other

Considerations

What if my samples sizes are already determined?
Calculate power based on expected effect sizes

« What power will | have to detect a two-fold change in mean
expression?

Calculate detectable effect size based on required power

» Given sample sizes and 80% power, we can detect 2.5 fold-
change

* |s this effect size in the realm of what is reasonably expected
from the data?

What if | don’t have preliminary experiment data?

Power can be calculated for some hypothesis tests under a “worst
case scenario”

« E.g. tests in proportions
|dentify variability values from literature
Use data from other study with closest sample properties
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Other

Considerations
cont.

Will you have missing data (e.g. proteomics)?
Power calculations assume no missing data

Are you testing more than two groups?
Multiple test correction

Hypotheses not dealing with means (e.g. trend analysis over
time)

Variability is not straightforward calculation

Example data is key
Tips

Contact your favorite statistician before you plan replicates

Groups vs Replicates

« If determining how to allocate resources - More replicates per
group, rather than adding more groups

48
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EMSLY

Missing Data and
Imputation

Jen Huckett, PhD
Data scientist/Statistician




Missing data
Nature of missingness
Implications for inference based on missing data

Imputation
Common imputing methods & considerations
Implications of using imputed data in subsequent inference
Multiple imputation

52



Up Front

What is “missing data”?
No data value is stored for the variable in an observation
Various reasons for & types of missing data

What is “imputation”?
Filling in the missing data
Numerous methods, selection depends on type(s) of missing data
Multiple imputation is best practice
 Impute (result is m complete data sets)
* Analyze (leading to m analysis results)
* Pool m results

https://en.wikipedia.org/wiki/Missing data

https://en.wikipedia.org/wiki/lmputation (statistics)
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https://en.wikipedia.org/wiki/Missing_data
https://en.wikipedia.org/wiki/Imputation_(statistics)

Unobserved, not captured, not applicable, NA, etc.
Often appear as blank cell in a table or as NA, N/A, n/a,...

Education Number No Work Work Earnings |Retirement| Interest | Assistance
Earners | Earners | Hours Months
g 4 1 0 55 12 84 0.7 0.2 0
Missing Data ; : - o = - - ;
4 1 0 8 11 85 12 5 0
4 1 0 75 12 135 0 0.1 0
4 1 0 43 0 0 NA™. ¥ NA NA
4 2 0 40 12 92 0 4. 0
2 0 1 0 0 0 NA 0 0 °
4 1 0 40 7 35 0 0:65 [0~ N °
1 0 1 0 0 0 NA NA <~ 25
4 1 0 30 8 14 0 i _t!
4 2 0 35 12 0 0 10—
2 1 0 5 4 5 NA <l—05 |—0 |
2 2 0 40 6 12 0 0 NA <«
3 1 0 40 12 25 0 0.1 0




Missing Data

Missing completely at random (MCAR)
Missingness is independent of observed and unobserved variables

Analysis of complete cases (throwing out cases with NAs) produces
unbiased results

Strong and often unrealistic assumption

Missing at random (MAR)

Missingness is systematically related to observed data
Analysis of complete cases may or may not produce unbiased results
Proper accounting for known factors can produce unbiased results

Missing not at random (MNAR)

Missingness is systematically related to unobserved predictors or the
missing value itself (e.g., censoring)

Analysis of complete cases may produce unbiased results but more
likely results will be biased

http://www.stat.columbia.edu/~gelman/arm/missing.pdf
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Missing Data

Analysis using complete cases only (no imputation)
Complete-case analysis
Available-case analysis
Nonresponse weighting

56



Imputation

Imputation to enable analysis methods that retain all
observations
Mean imputation
* Overall mean
» Means of subpopulations
* Regression predictions
« Matching & hot deck
Indicator that indicates missingness of predictors
 Additional category within existing categorical variable
 Additional variable associated with continuous predictor)
Random imputation of single or multiple variables
« Draw from a probability distribution
« Regression + error drawn from a probability distribution

57



Imputation

Impute earnings = average(84, 85, 135, 0, 92, 0, 35, 0, ...) = 52.2

Impute retirement = average(0.7, 0, 12,0, 0,0, 0, ...) = 2.2

Impute interest = average(0.2, 0, 5, 0.1, 1.5, 0, 0.65,...) = 1.7
Impute assistance = average(0, 0, 0, 0, ...) = 0.7

Number

No

Work

Work

Education Earners | Earners | Hours | Months Earnings [Retirement| Interest | Assistance
4 1 0 55 12 84 0.7 0.2 0
4 2 0 40 12 41 0 0 0
4 1 0 8 11 85 12 5 0
4 1 0 75 12 135 0 0.1 0
4 1 0 43 0 0 2.2 1.7 0.7
4 2 0 40 12 92 0 1.5 0
2 0 1 0 0 0 2.2 0 0
4 1 0 40 7 35 0 0.65 0
1 0 1 0 0 0 2.2 1.7 2
4 1 0 30 8 14 0 1 0
4 2 0 35 12 41 0 0 10
2 1 0 5 4 5 2.2 0.5 0
2 2 0 40 6 12 0 0 0.7
3 1 0 40 12 25 0 0.1 0
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Imputation

Overall mean earnings did not account for increases with education

o=
1

log(earnings)

M
*BE———
e W

*
..
T .
* *
1 2 25 3 4

factor{education)
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Impute predicted earnings to fill in missing earnings (deterministic imputation)
What about uncertainty in model & predictions?

Draw imputed values from a normal distribution (random imputation)
mean = predicted value
standard deviation = prediction standard error

. o
Imputation S '+ Deterministic imputator
Random imputation
8 .
7] 0
e -
E % B ..u‘;
o e
E o /
g Y P
E 5
& -
a“”
o 4 o
I I I I I
0 20 40 60 80

Regression prediction




Imputation

Imputation model matters
Simple models shown today
More complex models and algorithms can be used

« Multistage imputation: combine logical rules with one or more
imputation methods

« Multivariate or iterative imputation to impute multiple variables

Incorporate uncertainty in imputed values
Which realization of random imputations should | use?
All of them (multiple imputation)
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Rather than replacing each missing

00

value with one randomly imputed value, = |« imemmmens| oo g g it 2
replace each with several imputed S | Random mputaton 4|, + % ¢ 880" 280, O 8
values reflecting uncertainty about the 2 _ L 5 ORI
imputation model 5 ° R AR LR
_ Analyze each complete dataset S % i MiTgestalante g
I\/Iultlple Analysis results will vary, reflecting impacts £ o ., ';&;h > :,. .o ?
Imputation of imputation uncertainty Je :!'Ag: . ';:: . *
Which results should | use? ° % e ‘Q’T e | | |
Use them all to account for variation within 0 20 40 60 80

& between imputed data & results
Regression prediction

Example:
Impute M=5 complete datasets (m=1, 2, 3, 4, 5)

Apply regression analysis to each: estimate coefficients 3,,, and standard errors s,,
for each m=1,...,5 dataset & analysis

Overall estimate: 3 = %Z%ﬂ Bin

Variance estimate: vV =W + (1 +.) B where B =——3M_(f,, —f) and W = -3 _, 52
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Data Processing

Format
Data

¢ Replace values (e.g.
% replace 0's with
MNASs)

* Transform the data
(e.g. log2, log10, In)

Filter
Biomolecules

Proteomics filter .

(remove degenerate
peptides or reguire %
minimum # of

peptides per protein)
Molecule filter
(remove biomolecules
not present in = x
samples)

Coefficient of
variation (CV) filter
(remove highly
variable
biomolecules)
Custom filter

Independence of
missing data
(IMD)-ANOVA filter
[remove biomolecules
for which we cannot
perfarm statistics)

Filter
Samples

robust Mahalanobis
distance (rMd) filter
(identify outlying
samples based on
various metrics)

0.49:2,0

Normalize
Data

Choose a specific
normalization
strategy

Use Statistical
Procedure for the
Analyses of peptide
abundance
MNormalization
Strategies (SPANS)
to evaluate and
choose from
multiple
normalization
strategies

Figure 1. Quality control and processing workflow in pmartR package.

Stratton, K., Bramer, L. 2023. Typical Processing Workflow.

https://pmartr.github.io/pmartR/articles/Typical_Processing_ Workflow.html

Summarize
Data

Correlation heatmap
sequential

projection pursuit
Principal Component
Analysis (sppPCA)
plot
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Data Processing

Summarize peptide data
# unique sample IDs _
] ] ## Unique SampleIDs (f data)
# unique prOtelnS ## Unique Peptides (e data)
: : ## Unique Proteins (e _meta)
# Ur?lql-le peptldes ## Missing Observations
# mISSINg ## Proportion Missing
. . . #i# Samples per group: StrainC
Proportion missing tt eomlen per sroun: Straing
LR diiples P ErUuUp. ailc O
Samples per group ## Samples per group: strainA

HH
L1 ey S

s k)

55

Stratton, K., Bramer, L. 2023. Typical Processing Workflow.
https://pmartr.github.io/pmartR/articles/Typical_Processing_ Workflow.html

isobaricpepDat

L% I ¥

215228

an

16259
5541265
8.572
15

=
LnowLn

=
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|dentify samples that are potential outliers or anomalies (due
to sample quality, preparation, or processing circumstances)
using robust Mahalanobis distance (rMd) score based on 2-5
o fhte following metrics

Correlation
Proportion of data that is missing (“Proportion_Missing”)

: Median absolute deviation (“MAD?”)
Data Processing

Skewness
Kurtosis
ample Outlier Results
p-value threshold = le-04
7\ Summary of RMD metrics used
U o MAD | |  Skewness Corr Proportion_Missing
. | May remove

w ® . D ] 1
g 061 samples with
5 higher
a Group T proportion
c 0.31 . .
% strain ‘ missing than
< ® Straink 054
= Straint . other SampleS
< v SamplelD
§ § 0.50 14 0.21 StrainA_D3_R2
=
g

0.14
24
0.2519
0.0+ ‘

67
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Statistically
Compare

Missingness
Between Groups

= Like ANOVA but instead of comparing means & variance,
g-test compares rates of missing data between groups

Nonmissing (second group)

Count of non-missing values in each group

StralnB vs StrainA StrainC vs StrainA StrainC vs StrainB

15 @200

1QNAA4523456789 1ANAAA523456789 1ANAAAN523456789
Nonmissing (first group)

Statistically significant

o]

Number of biomolecules
in this bin

6000

4000

2000

69



=

o A .
C o 90 (Gl
* Human plasma (top) 23 !
e N=23 § Gcn 70 o
: : : &< 60} 14.7%
* Negative relationship between 3 £ 5o SN b o L - - - -
missing values and log10 mean s x A 354
intensity 22 7| !
- Correlation = —0.51 £ 1of : o® ©
! g e w7 3
Mean log10 Abundance of
E/Iatterns Of (B) Peptide within NGT group
ISSINgNEeSS
J = Mouse lung (bottom) e -
L E-gﬂ' m:ml_l—.xm 0o
- n=8 - . _.
. . . ﬁ m,-"{_]. - n—mu O 23
* Negative relationship between S B0l | 0 omt— |
peptide missing data and ST 0k = = commmmb——
|ntenS|ty 4}5 -F;" 40 | 25.3% ul::_mm'.u od2.7"
. c 30 T
» Correlation = -0.40 5P A —— 0 _
E 10l o T O D |
0 ﬂ
-2 -1 0 1 2 3 4 5

Webb-Robertson, B., et al. 2015. Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass
Spectrometry-Based Label-Free Global Proteomics. J Proteome Res. 2015 May 1; 14(5): 1993-2001. doi:10.1021/pr501138h

Mean log10 Abundance of
Peptide within Sham group
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Nature of Missing

Data

Peptide peak intensity and amount of missing data have
been previously shown to be negatively correlated [26,27]

Potentially due to left-censoring of data. Under this assumption, the
following should be true:

* Only low-abundant peptides should have missing values.

 Fraction of missing values should increase as the peptide
intensity decreases.

Don’t see this uniformly though

Not all peptides of low intensity have large amounts of missing
values and likewise not all highly abundant peptides have high
coverage.

Although there is a relationship between peptide intensity and
missing values many peptides exhibit other behavior

Conclusion: missing values are a combination of NMAR and
MAR data.

Webb-Robertson, B., et al. 2015. Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass
Spectrometry-Based Label-Free Global Proteomics. J Proteome Res. 2015 May 1; 14(5): 1993-2001. doi:10.1021/pr501138h
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A variety of imputation algorithms have been developed and
discussed in the literature. [12,14-16,20,27,35-38]

Algorithms grouped into three categories:
(1) imputation by a single-digit replacement
(2) imputation based on local structures in datasets
(3) imputation based on global structures in datasets

Various methods can be used to execute each:

Imputation (1) replace missing with limit of detection (LOD), half the minimum
observed among all peptides (LOD1), half the minimum for each
peptide (LOD2), random tail imputation (RTI)

(2) K nearest neighbors (KNN), local least squares (LLS), least-
squares adaptive (LSA), regularized expectation maximization (REM),
model-based imputation (MBI)

(3) Probabilistic principal component analysis (PPCA), Bayesian
principal components analysis (BPCA)

Webb-Robertson, B., et al. 2015. Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass
Spectrometry-Based Label-Free Global Proteomics. J Proteome Res. 2015 May 1; 14(5): 1993-2001. doi:10.1021/pr501138h
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Dilution series

Dataset created with known dilution ratios produces peptides with
known expected ratio.

Compare expected to actual based on analysis data set (observed
combined with imputed data) for each imputation method.

Determine ‘best’ imputation method
 How to compare?

 Coefficient of variation (CV) of root-mean-square error (RMSE) to
) measure deviation of observed values from expected values
Imputation each peptide and protein

Experimental data

Collected on real samples, with no estimates of actual values (no
ground truth).

If you have two sets of sample from known and distinct experimental
groups —> evaluate based on classification accuracy (classification
method applied to analysis data set)

If not — what are your options?

Evaluating the

Webb-Robertson, B., et al. 2015. Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass
Spectrometry-Based Label-Free Global Proteomics. J Proteome Res. 2015 May 1; 14(5): 1993-2001. doi:10.1021/pr501138h
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What is unsupervised learning?

78


https://twitter.com/Ciaraioch

Categorizations of unsupervised learning techniques

Dimension Reduction /
Feature Extraction

Clustering

Q;gn [=] a ’ o o Q L_E:;
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Source: http://arogozhnikov.github.io/images/opera/post/clustering-dbscan-
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http://arogozhnikov.github.io/images/opera/post/clustering-dbscan-smiley.gif
http://arogozhnikov.github.io/images/opera/post/clustering-dbscan-smiley.gif

Sample: the item(s) or unit(s) of analysis.

Features: the distinct traits or characteristics that describe each sampled unit.
The collection of p features are represented in the data as a p-dimensional feature vector

Data: the collection of samples and their features.

Feature extraction: a transformation of the p-dimensional feature vector to a p’-dimensional feature
vector, where p’ « p.

Unsupervised Learning: techniques that enable pattern identification within the data without prior
knowledge (labels) on the samples.

“ X
genel gene g ] (@)
[‘%}f .oo.:) © cell1 @ /182 .- 3 | o (@) @) .
‘§(§’%’ — Q. ... : _'cellz O 0 523 R ® O (@)

O
. O . O cell 3 . 765 ", 34 O <)o . O :.
Ce O. '®) : : @) o @] )
celln,,.go 43 mis 1578 ! O O ©
-
Brain tissue Single cell isolation Unlabeled target dataset Gene counts Clustering and visualization

Source: Mieth, B., Hockley, J.R.F., Gornitz, N. et al. Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Sci Rep 9, 20353 (2019). https://doi.org/10.1038/s41598-019-56911-z



Dimension Reduction Techniques



+ Given a set of p features, PCA will construct p principal components that are
linear combinations of the original set of features. 2t

* PCy = wyyFeature; + wyFeature, + -+ + wy,Feature,
* PC; = wy Feature, + wy,Feature, + -+ + wy, Feature,

0k ] »
 Principal components are found such that each are uncorrelated and ordered M ]
according to the proportion of variability that they explain. ,
* The linear combinations (w;;) that define each component correspond to the o
orthogonal eigenvectors of the data covariance matrix. 3
* The eigenvalues of the data covariance matrix reflect the proportion of variability R S
captured by the corresponding principal component. Senie-ot il omaanent anchei-<lpke i et itk
* In practice, one retains only the first p’ principal components, where p’ < p. | Elgenvalue | Percentage of Variance | Cumulaie
The number of components p’ is chosen according to the cumulative variability > 1635 18.17% 52.62%
i Y 3 112792 | 12.53% 75.22%
they explaln (eg 80 A)) 4 0.95466  10.61% 85.82%
5 046384 515% 90.93%
i] 0.32513 | 3.61% 94 59%
- PCA requires that each of the original p features are numeric variables. sl 4 e et
9 0.09911 | 1.10% 100.00%

+ Prior to performing PCA, the original data must be centered and scaled such that
eaCh feature haS da mean Of O and Varlance Of 1' Source: https://www.originlab.com/doc/Tutorials/Principal-

- If each of the p original features are normally distributed, the resulting principal compenentansh
components are independent. 82



Uncorrelated # Independent

Correlation: -0.002

1004

variables are not necessarily independent.

Correlation: 0.008
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If two variables are independent, they are uncorrelated. In general, the reverse is not true: uncorrelated

However, if the data are normally distributed, lack of correlation does imply independence.




PCA: Example

1.0- Alcohol

; Alcohol
Alcohol Color |

Proline
MalicAcid
Grape variety
%Phenols % Ielae-_bbioll_o
__________________ rignolino
|®/ Barbera

0 2.5

o
1T | | | Dim1 (36.2%)

05 1.0 -5.0 25 25 5.0

00 0.0
Dim1 (36.2%) Dim1 (36.2%)

Source: Nguyen LH, Holmes S (2019) Ten quick tips for effective dimensionality reduction. PLoS Comput Biol 15(6): €1006907. https://doi.org/10.1371/journal.pcbi.1006907
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t-Distributed Stochastic Neighbor Embedding (t-SNE)

- PCA is a linear dimension reduction technique that may fail to
adequately represent data that are non-linear in structure.

« t-SNE is a non-linear dimension reduction technique suitable for
visualizing such non-linear, high-dimensional data in lower dimensions.

« Implementation of t-SNE requires that one specify a parameter called
the perplexity that balances between local and global representation of ’ -

d ata StrU CtU re Source: https://towardsdatascience.com/an-introduction-to-t-sne-with-python-
example-5a3a293108d1
Local structure < $» Global structure
Origina! Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100

Step: 5,000 Step: &,000 Step: 5,000 Siep: 5,000 Step: 5,000 35



t-Distributed Stochastic Neighbor Embedding (t-SNE)

Original multidimensional space

® - Distances

Point of
interest

Use of Normal distribution curve for calculating
similarity scores

Low
similarity
scores

High
<+—— similarity
scares

Point of interest

4

S

Source: https://towardsdatascience.com/t-sne-machine-learning-algorithm-a-great-tool-for-dimensionality-reduction-in-python-

ec01552flale

Gaussian
Distribution

Gaussian
Similarity
— t-Similarity

t-Distribution

Euclidean
distance

Source: https://hub.packtpub.com/using-autoencoders-for-detecting-credit-card-fraud-
tutorial/



t-SNE: Example

Cell 1
Cell 2
Cell 3 Cell 2
Cell 4 it iy Cell 3
- Wkl Cell 4 A
ge::z - o cals i Cells2and 3
el 5 =i

oL Cell 6

Cell 7 2 "

Cell 7
Not GT Not GT

Cell 1

Source: George Dimitriadis, Joana P. Neto, Adam R. Kampff; t-SNE Visualization of Large-Scale Neural Recordings. Neural Comput 2018; 30 (7): 1750-1774. doi: https://doi.org/10.1162/neco_a 01097

«  “Cluster” sizes have no meaning in t-SNE plots, nor do distances between them.

« Since t-SNE is a non-deterministic algorithm, different runs with the same hyperparameters may yield different
results.

* In contrast to PCA, the lower-dimensional mappings of t-SNE have no interpretation.
* Related to this point, t-SNE mappings may not be applied to new data whereas PCA loadings can. 87


https://doi.org/10.1162/neco_a_01097

Clustering Techniques



Measuring Dissimilarit

* Fundamentally, clustering algorithms rely upon some y A
quantitative measure of dissimilarity to inform how
sampled units are clustered. 6 + A
* In general, clustering algorithms aim to minimize the
measured dissimilarity within clustered groups 5 4
Manhattan:
« Several different metrics exist, and the choice of metric 41 da(A, B) =5
is largely data-dependent.

Euclidean:
dz(A, B) =3.6

* Assuming a p-dimensional feature vector, the following > 1 «B

are a few commonly used dissimilarity metrics:

 Euclidean: d(x;, x;/) = \/ZI')=1(xij — xi’j)z

» Manhattan: d(x;, x;1) = X7_, [x;; — x;

Cosine:
(A, B)=41.6°

| | | | |
I I I I I >
2 3 4 5 6

jl
 Correlation: d(x;, x;7) = 1 — corr(x;, x;1)

Source : https://community.insaid.co/hc/en-us/articles/360052305633-What-is-Euclidean-And-Manhattan-distances-in-KNN-
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Clustering Approaches

Partitional

Source:
https://www.geeksforgeeks.org/clustering-

in-machine-learning/

Linkage/Hierarchical
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Source: Janssen, Peter & Walther, Carsten &
Lideke, M.. (2012). Cluster Analysis to
Understand Socio-Ecological Systems: A
Guideline.

Agglomerative/Divisive

Model-Based Density-Based

Cluster 2
L
s o?“’ =.‘ x L .c'"’
Cluster 1 o . - {
® °
N L
L] ° .. (1)
¢ * o"'o . .
A A
> o f(— —)iaﬁi(— >0 e N .3 ::. &. 3
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Source:
https://towardsdatascience.com/gaussian-

mixture-models-explained-6986aaf5a95

Density-Based Spatia
Clustering of
Applications with Noise
(DBSCAN)

Gaussian Mixture
Modeling (GMM)
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Provided specification of the number of clusters k, the k-means
algorithm:
Randomly chooses k centroids as initial cluster centers.
Assigns each datapoint to cluster of nearest centroid.
Updates centroid assignment to the mean of datapoints in each
cluster.

Repeats 2-3 until assignments no longer change (convergence).

Given the random initialization, setting a random number
generator seed prior to running is essential for reproducibility.

The k-means algorithm seeks to minimize the variability of data
within clusters.

Convergence is only guaranteed when Euclidean distance is used.

The k-means algorithm is sensitive to outliers and differences in
scale.
Data should be centered and scaled prior to implementation
If outliers are present, consider implementing the partition around
medoids (PAM) algorithm.
For categorical data, the k-modes algorithm should be
implemented.

Step 1

Lt

Step 4

outher

outher

e

||~i.|

Ideal clusters

Source: https://www.slideshare.net/anilyadav5055/15857-cse422-unsupervisedlearning




Agglomerative/Divisive Hierarchical Clustering

When smaller-scale clustering is expected within larger

clusters, hierarchical algorithms should be considered:
*  Observations are iteratively grouped (agglomerative) or
divided (divisive) according to measured dissimilarity.

Implementation of these algorithms requires specification of
*  The number of clusters k
*  The dissimilarity metric
«  The linkage method (i.e. criteria for merging/dividing clusters)

Several linkage methods exist, each of which may lead to

different clusters. Common methods include

- Single Linkage: minimum distance between points in
different clusters. Prone to chaining.

- Complete Linkage: maximum distance between points in
different clusters. Tends to yield compact, spherical clusters.

* Mean Linkage: average of all distances between points in
different clusters. Compromise between single and complete
linkage.

- Centroid Linkage: distance between cluster centroids. Often
similar to mean linkage.

[ Aqqlomerative Hierarchical Clustering )

© O 7O 77N
©® O@ ©] @é’C‘ © @/60) 7 6@/6/@} ,'
2 ©/ ey N Al = N O
ce = &® A CONEE ACO N
©@ © O /9 ©ON /©) (@Y @)
© © \Q @/ @ &/ \@ &/~

erarchical Clustering

Source: https://quantdare.com/hierarchical-clustering/

Single Linkage

14

6 8 10

Hevirs2

Mean Linkage

15 20 25

Source: Smith, B. (2018). Section 2: Machine Learning for Biomedical Data [PowerPoint slides].

Complete Linkage

Centroid
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Gaussian Mixture Modeling (GMM)

Cluster 1
- In contrast to previous approaches, GMM takes a —— Cluster 2
statistical/probabilistic approach to clustering: s\
- GMM assumes the data arise from a mixture of k =22
multivariate normal distributions. S—,
. . : : > e— A
+ The expectation-maximization (EM) algorithm is used to R
estimate model parameters. - 0
' 8)°3 o
* Cluster assignments obtained from GMM are soft. Cluster 3
+ Unlike for previous approaches, cluster membership of each > !
datapOInt IS CharaCterlzed by a quantlfled Ievel Of Source: https://bradleyboehmke.github.io/HOML/model-clustering.html
u ncertal nty' Ell Vil EEI : VVI VVE
® % i | R . i
0.002 0.499 0.499 % @ ' el @ ¢
B 0.999 0.001 0.000 eee eev vev v e
- GMM clustering may better capture irregular, non- RS Y N\ N 9 i
spherical clustering structures depending on user Fegdn 9. 4 SN bS5
SpeCification Of k and the Covariance StrUCture. Source: https://bradleyboehmke.github.io/HOML/model-clustering.html
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DBSCAN

* Unlike previously discussed approaches, DBSCAN does not require
specification of the number of clusters. Instead, users specify two
parameters, “Min pts” and «.

Based on these parameters, DBSCAN defines clusters in the following
way:
+ Identify all points that have “Min pts” datapoints within a distance of €. These
points are core points.

Cluster 1 Cluster 2 . . i
« Core points that are density-connected are assigned to the same cluster.
Source: DiFrancesco, P.-M.; Bonneau, D.; Hutchinson, D.J. The Implications of M3C2 Projection Diameter on *  Points that do not have “Min ptS” datapOintS within € are classified as either
3D Semi-Aut ted Rockfall Extraction fi S tial T trial Laser Scanning Point Clouds. Remote : . :
Sens. 2020, 12, 1885, hitps Idoi.org/ 10,3300/ 121 11385 border points or noise points.

Border points are within € of a core point. Noise points are not.

+ Border points are assigned to the cluster of the nearest core point, noise
Ltk points are unclustered.

DBSCAN can find clusters of any shape and is robust to outliers.

- However, DBSCAN cluster quality may be hindered by improper choice of
distance metric (e.g. using Euclidean distance for high-dimensional data)

- DBSCAN assumes uniform densities across clusters.

Source: https://web.iitd.ac.in/~bspanda/dbscan%20clustering.pdf
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How to choose k and other hyperparameters?

« Work with a statistician/data scientist! ©

. Separation
Cohesion P

« Compute cluster validation metrics over a grid of parameter

. Source: https://towardsdatascience.com/are-the-clusters-good-1567de6a9524
choices.
* Internal: These metrics quantify cluster cohesion and separation.
They may also measure connectivity.

- External: These metrics quantify the agreement between clusters 0.6
and some externally provided set of labels.

Optimal number of clusters

°
N

« Dozens of validation metrics exist, none of which are uniformly
“best” in all situations.

* In practice, several metrics are often computed.

* For the purposes of parameter selection, the Dunn Index, Davies-
Bouldin Index, silhouette coefficient, and gap statistic are often used. 0.0-

o
)

Average silhouette width

1 2 3 4 5 6 7 8 9 10
Number of clusters k

Source: https://rpkgs.datanovia.com/factoextra/reference/fviz_nbclust.html
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