WELCOME! Summer School will begin at 8:30 a.m. PDT

Summer School Day 4: Transcriptomics

Rachel Richardson & Lisa Bramer Biostatistics & Data Science 07.27.2023

8:30-8:35 a.m.	Introduction	Lisa Bramer
8:35-9:25	Express Yourself!: Transcriptomics from sample to counts	Bill Nelson
9:25-10:05	Pre-processing of Transcriptomics Data	Rachel Richardson
10:05-10:15	Networking Break	
10:15-11:00	Statistical Models for Transcriptomics Data	Lisa Bramer
11:00-11:45	Post-differential Expression Analyses (or how to interpret that big ole pile of data you've just generated)	Jason McDermott

8:30-8:35 a.m.	Introduction	Lisa Bramer
8:35-9:25	Express Yourself!: Transcriptomics from sample to counts	Bill Nelson
9:25-10:05	Pre-processing of Transcriptomics Data	Rachel Richardson
10:05-10:15	Networking Break	
10:15-11:00	Statistical Models for Transcriptomics Data	Lisa Bramer
11:00-11:45	Post-differential Expression Analyses (or how to interpret that big ole pile of data you've just generated)	Jason McDermott

Express Yourself!: Transcriptomics from sample to counts

Bill Nelson Computational Scientist

Overview

- What is transcriptomics?
- What techniques can be used to interrogate a transcriptome?
 - EST
 - SAGE
 - Microarray
 - RNA-Seq
- RNA-Seq study design considerations
- RNA-Seq process
 - Sample preparation
 - Library preparation
 - Illumina Sequencing
 - Sequence data quality checks
- Bonus round
 - Long-read sequencing
 - Single-cell transcriptomics

What is transcriptomics?

Analyzing the complement of RNA in a sample Functional genomics

- Why transcriptomics?
 - Identify expressed genes
 - Non-coding genes
 - Determine changes in gene expression under different conditions
 - Determine regulatory relationships between genes
 - Examine splice variants [Eukaryotes]
 - Transcription start sites; use of alternate promoters

Other technologies from the past

Expressed sequence tags (EST)

Serial Analysis of Gene Expression (SAGE)

Select cells for profiling Attach mRNA to magnetic beads by poly A tail and synthesize cDNA Cut transcript with anchoring enzyme (Nla III) Release SAGE tag from transcript with tagging enzyme (BsmFI) Clone tags into plasmid for automated sequencing 32 Tags Extract and count tags to calculate 4 Tags expression level of each transcript 59 Tags Compare tag counts between libraries to find differentially expressed genes and map tags to sequence databases

Other technologies from the past

9

Other technologies from the past

Microarray

https://bitesizebio.com/7206/introduction-to-dna-microarrays/

The reigning champion

RNA-Seq

Downstream analysis

By Malachi Griffith, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough, Obi L. Griffith - http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004393, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=53055894

Experimental design

Considerations

- Number of samples vs depth of sequence
- Sequence depth
 - Complexity of sample
 - Total expected length of the transcriptome
 - Number of genes
 - Length of genes
 - Expected dynamic range of expression
- Replication
 - 5 or more biological replicates is preferable
 - Insures against technical failures
 - Technical variation can be counteracted without additional expense
 - · Pool parallel preparations before sequencing
 - Biological replication
- Reference data set
- Verification
 - What other techniques can you use to verify results?

Preparing for RNA-Seq

Sample prep

- Test RNA isolation technique on non-precious samples
 - Yields can be low
- Stabilization of samples
 - Snap-freeze samples
 - RNAlater®
- Contamination
 - Are there steps you can take to remove contaminants prior to isolation?
- Poly-A enrichment (for eukaryotes)
- rRNA depletion
 - Can comprise up to 98% of RNA content

Preparing for RNA-Seq

Library prep

- Method will depend on choice of sequencing technology
- cDNA synthesis
 - DNA more stable
 - Allows amplification
- Fragmentation and size selection
 - Produces uniform range of fragments suitable for sequencing
- Ligation of primers/adapters
 - Sequencing primer site
 - Barcode for multiplexing
- Amplification
 - Enrich for proper construction
 - Compensate for low input

Performing RNA-Seq

Sequencing

Sequence data assessment

Quality assessment

Sequence quality scores: higher scores are better Image from FastQC

Sequence data assessment

Quality assessment

Sequence quality scores: higher scores are better

Sequence data processing

Grooming

- Quality trimming based off quality scores
 - Eliminate short remainders
- Adapter trimming
- Low-complexity screen
- Screen for 'contaminants'
 - rRNA
 - Host RNA

Alignment to reference

- Best if reference is derived from the same sample
 - Metatranscriptomes benefit from deeply sequenced, assembled metagenome
- Reference will typically be the genes, not the genome
 - Unless there is concern about splice variants
- Fast aligners that leverage exact matches
 - Burroughs-Wheeler aligner (BWA)
 - Bowtie2
- You can do reference-free analysis, but it is more complicated and limited.
 - Assemble transcripts
 - Align reads against transcript contigs

Count Quantitation

Read coverage

Eukaryotic gene structures

- Quantitate by
 - Gene
 - Exon
 - Transcript

Normalization

- Normalize by dataset size
 - Per million reads analyzed
- Normalize by target length
 - Per kilobase of gene length
- **RPKM** reads per kb per million
 - PM = total reads aligned/1M
 - RPM = reads mapped/PM
 - RPKM = RPM/gene length in kb
- FPKM fragments per kb per million
 - Accounts for paired-end sequencing
- **TPM** Transcripts per million
 - RPK = (reads mapped/gene length in kb)
 - $PM = RPK_{Tot}/1M$
 - TPM = RPK/PM

Counts table

Gene	Cond1Rep1	Cond1Rep2	Cond1Rep3	Cond2Rep1	Cond2Rep2	Cond2Rep3	Cond3Rep1	Cond3Rep2	Cond3Rep3
Gene0001	6286	8478	2579	8548	2746	6401	890	8724	2784
Gene0002	2425	7199	8735	5153	2287	9552	8776	5691	9166
Gene0003	5027	1561	9483	5721	999	1304	3927	9575	1711
Gene0004	4802	7969	2070	3603	3320	654	4970	6732	3824
Gene0005	2222	2031	7334	1779	7490	5787	5484	3168	8653
Gene0006	5744	8043	3697	6928	8897	7642	1574	4900	1742
Gene0007	9849	3258	5418	1933	2289	8225	6464	1978	7949
Gene0008	8584	6564	7867	4645	4040	6269	9850	7820	6141
Gene0009	1223	6891	5187	3159	8320	4461	5119	5622	3070
Gene0010	3177	8360	9914	682	5093	7976	6144	8234	1781
Gene0011	3291	4337	8829	128	1405	2576	601	9814	1585
Gene0012	7427	2268	4973	2128	430	5199	4994	3998	3845
Gene0013	3801	333	6462	1362	562	6715	630	928	7195
Gene0014	3318	3755	1595	5437	3642	9762	9202	3177	1967
Gene0015	8256	962	2949	9523	6939	8729	6705	4026	231
Gene0016	5674	476	312	4731	849	6150	9569	5112	1362
Gene0017	2717	3538	322	9158	9325	9270	8735	6213	6352
Gene0018	5793	5111	346	1232	4936	4320	3868	3537	9489
Gene0019	4827	6522	5993	2353	3510	7687	936	2227	5498
Gene0020	9283	5366	2738	9583	8087	3724	3118	3029	8892
Gene0021	7857	4550	8474	1900	4997	3103	5586	7392	7517
Gene0022	7079	1944	5091	8256	239	5957	7113	1800	6481
Gene0023	3880	786	7076	1994	7298	7056	1815	1296	2288
Gene0024	5104	9561	855	7164	8955	5429	5331	6118	152
Gene0025	217	8693	131	9236	12	2205	5998	6902	7103

Dataset analysis

PacBio sequencing

Nanoscale reaction chambers

Pacific Biosciences — Real-time sequencing

Nature Reviews | Genetics

Nanopore sequencing

Sequence determined by measuring interruption of electrical current

https://www.genome.gov/genetics-glossary/Nanopore-DNA-Sequencing

Single-cell transcriptomics

https://www.nature.com/articles/s12276-018-0071-8

Questions?

8:30-8:35 a.m.	Introduction	Lisa Bramer
8:35-9:25	Express Yourself!: Transcriptomics from sample to counts	Bill Nelson
9:25-10:05	Pre-processing of Transcriptomics Data	Rachel Richardson
10:05-10:15	Networking Break	
10:15-11:00	Statistical Models for Transcriptomics Data	Lisa Bramer
11:00-11:45	Post-differential Expression Analyses (or how to interpret that big ole pile of data you've just generated)	Jason McDermott

Day 4 Transcriptomics

Pre-processing of Transcriptomic Data

Rachel Richardson Data Scientist I

Our definition

After

transcriptomic counts have been cross-tabulated for further analysis

Before differential expression analysis is performed

Is there a vaguer term than preprocessing?

"Next time, don't start the presentation by asking, 'Can you tolerate ambiguity?'!"

Our definition

After

transcriptomic counts have been cross-tabulated for further analysis

Before differential expression analysis is performed **Genes/Transcripts**

Is there a vaguer term than preprocessing?

Samples

^	MCL1.DG 🌻	MCL1.DH 🗘	MCL1.DI 🗘	MCL1.DJ 🗘	MCL1.DK 🌻	MCL1.DL 🗘	MCL1.LA 🍦
497097	438	300	65	237	354	287	0
100503874	1	0	1	1	0	4	0
100038431	0	0	0	0	0	0	0
19888	1	1	0	0	0	0	10
20671	106	182	82	105	43	82	16
27395	309	234	337	300	290	270	560
18777	652	515	948	935	928	791	826
100503730	0	1	0	0	0	0	0
21399	1604	1495	1721	1317	1159	1066	1334
58175	4	2	14	4	2	2	170
108664	769	752	1062	987	995	903	1381

Outlier detection

Transformation/Normalization

General visualizations

Why do we need to do preprocessing?

- Quality control
 - Not every sample or transcript turns out the way we hope!
 - Understanding why a sample or transcript is showing an unusual trend is important
- Removing non-biological or experimentally irrelevant variation
 - Lots of variation between individuals of a population
 - Variations in preparation introduce unwanted variation
- Better understanding of the data
 - Check assumptions before running downstream analyses
 - Understand why results might look a certain way

Big takeaway We need to consider how RNA data is collected to apply appropriate preprocessing steps

Thinking ahead What preprocessing steps might be sensitive to zeros?

What is special about transcriptomics?

Count data

- Zeros matter!
- Typically modeled by negative binomial or Poisson distributions

Library size considerations

- All transcript counts in a sample = library
- Non-biological variation can change the efficiency of read transcription
- The total number of transcripts in a library often used as a normalization factor

Experimental Highlights -6 experimental groups -12 total mice ~26,000 annotated gene transcripts detected

Citation

Chen Y, Lun ATL and Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; peer review: 5 approved]. F1000Research 2016, 5:1438 (https://doi.org/10.12688/f1000research.898 <u>7.2</u>)

What does preprocessing look like with real data?

Basal stem cells (B)

Virgin

Pregnant

Lactating

Committed luminal cells in mammary gland (L)

Virgin

Pregnant

Lactating

*All mice Q and genetically identical

**RNA-seq data generated via Illumina sequencing, 100bp single end reads

Experimental Highlights -6 experimental groups -12 total mice ~26,000 annotated gene transcripts detected

Citation

Chen Y, Lun ATL and Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; peer review: 5 approved]. *F1000Research* 2016, **5**:1438 (https://doi.org/10.12688/f1000research.898 <u>7.2</u>)

What does preprocessing look like with real data?

Counts

Samples

Data exploration requiring scaling (or adjustments)

-Boxplots/barplots -Principal component analysis -Mean-variance plots

Can and should we scale transcriptomic data?

- For visualizing and data exploration? Absolutely!
- For use in differential expression? Typically, no

Common scaling

Counts per million: CPM

Log counts per million: LCPM

Reads per kilobase of transcript per **m**illion: **RPKM**

Fragments per kilobase of transcript per **m**illion: **FPKM**

Regularized log - rlog Variance stabilizing transformation - vst

How do we scale transcriptomic data?

Gene = g sample = i Counts for a gene = rSum of counts = R = Library size

edgeR: Limma-voom: $CPM = \frac{r_{gi}}{R_{\star}} \times 10^6$

$$LCPM = \log_2\left(CPM + \frac{2}{R_i}\right)$$

 $CPM = \frac{r_{gi} + 0.5}{R_{+} + 1} \times 10^{6}$

 $LCPM = log_2(CPM)$

*The 0.5 and 2 are arbitrary! Just needs to be a small number ③ **The +1 for voom ensures the proportion is less than 1 in all cases limma

What does the transformed data look like?

Boxplots of Un-Normalized Transcript Data Ordered by Group 30000 -Frequency 15. 0000 -0000 10 Group 📙 B virgin LCPM 📙 B pregnant 10 15 Ó B lactating 吉 L_virgin 崫 L_pregnant 10000 -L_lactating Frequency 1000 0 -100 -10 MCL1.DK MCL1.DL MCL1.DI MCL1.DJ MCL1.DG MCL1.LE MCL1.LC MCL1.LD MCL1.LA MCL1.LB MCL1.DH MCL1.LF 10 15 -5 Ó LCPM Samples

Scaling can explore visual representations in new ways

Curated data is not the same as cherrypicked data

What else should we be looking for?

Data exploration can sniff out odd occurrences

- The enzymes denatured or did not cooperate
 - Check the number of reads across the samples
- A contamination occurred
 - Check if there are an unusual number of transcripts observed or not observed in the samples
- The labels for two mice might be mixed up
 - Check if the transcript profiles are similar to expected groups

When should I be alarmed?

Grapher Beware: Pay attention to the scale of number of reads too, not just the similarity of total reads

Note:

The total number of reads can be plotted without transformation

Hot tip: Some sequencing software might flag this earlier, check with your analysts

Ť

When should I be alarmed?

Grapher Beware: Pay attention to the scale of number of reads too, not just the similarity of total reads

Note:

The total number of reads can be plotted without transformation

Samples

When should I be alarmed?

Principal Component Analysis (PCA) Typically requires normal data, doesn't work well with raw counts!

Other PCA methods -PCAHubert -GLM-PCA -Sparse PCA

Now what?

Preprocessing

- Transformation
- Data exploration
- Filtering

Normalization?

Differential expression?

Are we ready to be **Here**?

Know thyself

Statistical analyses almost always come with assumptions about what the data looks like

Staple differential expression methods

- DESeq2
- limma-voom
- edgeR

Now what?

- Preprocessing
 - Transformation
 - Data exploration
 - Filtering

Normalization?

Differential expression?

Note

Despite the same assumptions, DESeq2 and edgeR take different normalization approaches

- Transcripts need to be observed in 2+ samples
- Low count levels can mess up ratios and quantiles

What should we know about the statistical tests?

- DESeq2 and edgeR: Counts, negative binomial distribution, assumes that most genes are not DE and normalizes as such
- Limma-voom: Counts, linear weighted model, resulting test statistics are approximately normally distributed

Relies heavily on ratios and distributions

(More on these in our next talk!)

At least 2 nonzero samples is a good idea for analysis – often more required to assure the biomolecule is represented in all groups

How many transcripts can we actually use?

Count of biomolecules observed in at least X number of samples Count of Transcripts Δ Number of Samples

Recommendation from the top

At least **15** counts across all samples

AND/OR

~10 counts per sample with library size taken into account

Which transcripts have enough counts?

Before

After

Now what does our data look like?

Samples

Other caveats

-Batch effects -Iterative data exploration

Other data exploration methods may be just as useful!

Are we done yet?

Recap

- Transformation methods of visualization and data exploration
- Data exploration via
 - Boxplots
 - Library size
 - Genes detected per sample
 - Principal component methods
 - Expression counts
- A touch of info on popular differential expression methods

Now our data is ready for differential expression algorithms!

Thank you for listening!

Questions?

Rachel.Richardson@pnnl.gov

Networking Break

10:05 – 10:15 a.m.

11:00-11:45	Post-differential Expression Analyses (or how to interpret that big ole pile of data you've just generated)	Jason McDermott
10:15-11:00	Statistical Models for Transcriptomics Data	Lisa Bramer
10:05-10:15	Networking Break	
9:25-10:05	Pre-processing of Transcriptomics Data	Rachel Richardson
8:35-9:25	Express Yourself!: Transcriptomics from sample to counts	Bill Nelson
8:30-8:35 a.m.	Introduction	Lisa Bramer

Day 4 Transcriptomics

Modeling and Statistics

Lisa Bramer

Instructor Intro

Lisa Bramer

- Senior Statistician
- Computational Biology Group
 - Team Lead of Biostatistics
 and Data Science

lisa.bramer@pnnl.gov

Our definition

After transcriptomic counts have been cross-tabulated for further analysis

Before differential expression analysis is performed Genes/Transcripts

Is there a vaguer term than preprocessing?

Samples

*	MCL1.DG 🗦	MCL1.DH 🗦	MCL1.DI 🗦	MCL1.DJ 🗦	MCL1.DK 🗦	MCL1.DL 🔶	MCL1.LA 🗘
497097	438	300	65	237	354	287	0
100503874	1	0	1	1	0	4	0
100038431	0	0	0	0	0	0	0
19888	1	1	0	0	0	0	10
20671	106	182	82	105	43	82	16
27395	309	234	337	300	290	270	560
18777	652	515	948	935	928	791	826
100503730	0	1	0	0	0	0	0
21399	1604	1495	1721	1317	1159	1066	1334
58175	4	2	14	4	2	2	170
108664	769	752	1062	987	995	903	1381

After Preprocessing: Now Where Do we Go?

Transcriptomic counts have been cross-tabulated for further analysis

Preprocessing

Data Modeling: differential expression analysis is performed

Data Modeling and Analysis

Normalizing Count Data

Library size considerations

- All transcript counts in a sample = library
- Non-biological variation can change the efficiency of read transcription
- The total number of transcripts in a library often used as a normalization factor

<u>Lib. 1</u>	Gene1: 5	<u>Lib. 2</u>	Gene1: 2
	Gene2: 10		Gene2: 5
	Gene3: 200		Gene3: 100
	Total: 10M reads		Total: 5M reads

*2-fold changes in expression would be expected across all genes for identical samples

Common scaling

Counts per million: CPM

Log counts per million: LCPM

Reads per kilobase of transcript per million: RPKM

Fragments **p**er **k**ilobase of transcript per **m**illion: **FPKM**

Regularized **log - rlog** Variance stabilizing transformation - vst

How do we scale transcriptomic data?

Gene = g sample = i

 $CPM = \frac{r_{gi}}{R_i} \times 10^6$

 $LCPM = \log_2\left(CPM + \frac{2}{R_i}\right)$

edgeR:

edgeR

Counts for a gene = r Sum of counts = R = **Library size**

Limma-voom:

 $CPM = \frac{r_{gi} + 0.5}{R_{+} + 1} \times 10^{6}$

 $LCPM = log_2(CPM)$

*The 0.5 and 2 are arbitrary! Just needs to be a small number © **The +1 for voom ensures the proportion is less than 1 in all cases

limma

How do we scale transcriptomic data?

Major among-individual differences for <u>some transcripts</u> can affect perceived differences for other transcripts.

A Different Solution? TMM (Trimmed mean of M-value normalization)

 $M_g = \log_2 \frac{Y_{gk}/N_k}{Y_{gk'}/N_{k'}}$ count for gene g in library k divided by total counts in library k count for gene g in ref. lib. divided by total counts in ref. lib.

Calculate a trimmed across-gene mean of M

Identifies <u>scaling factors (one for each library)</u>, which minimize log-fold changes between samples for **most of the genes**.

<u>Assumption</u>: Most of the genes are not differentially expressed in the biological sense, which is why basing the scaling factors on a trimmed mean of log fold changes is justified.

Attempting to be Normal

- Normalize → Model assuming data follow Normal/Gaussian distribution
 - Limma-voom
 - TMM
 - ALDEx2 Bayesian compositional approach

Differential Expression Analysis (Back to thinking about raw counts)

*Want to test whether the mean number of reads for gene X drawn from sample type A differs from the number drawn from type B

Poisson Distribution

Discrete value distribution

- General Interpretation: number of events occurring in a fixed interval of time or space (events occur with a constant mean rate and independently of the time since the last event)
- Parameters: $\lambda > 0$
- Support: $k \in \{0, 1, 2, 3, ...\}$

• PMF:
$$p(x = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Mean: λ
- Variance: λ

Differential Expression Analysis (Back to thinking about raw counts)

Based on technical replicates, Poisson is a good approximation

Investigate Poisson Assumption

Are the data Poisson distributed? If not, how do they deviate from the expectation?

Differential Expression Analysis (Back to thinking about raw counts)

Need a different distribution

*For biological replicates, variance > mean (especially for high counts)

Differential Expression Analysis

The Negative Binomial Distribution

*Discrete distribution with additional variance parameter

- General Interpretation: number of successes in a sequence of independent and identically distributed Bernoulli trials before a specified number of failures, r, occur
- Parameters: $0 \le p \le 1$, r > 0
- Support: $k \in \{0, 1, 2, 3, ...\}$

• PMF:
$$p(x = k) = {\binom{k+r-1}{k}} p^k (1-p)^r$$

• Mean:
$$\frac{pr}{1-p}$$

• Variance: $\frac{pr}{(1-p)^2}$

Differential Expression Analysis

*Discrete distribution with additional variance parameter

Alternative Parameterization

$$\Pr(X=k) = \binom{k + \frac{\mu^2}{\sigma^2 - \mu} - 1}{k} \left(\frac{\mu}{\sigma^2}\right)^{\left(\frac{\mu^2}{\sigma^2 - \mu}\right)} \left(\frac{\sigma^2 - \mu}{\sigma^2}\right)^k$$

.

Differential Expression Analysis

The Negative Binomial Distribution

<u>Problem</u>: Variance must be estimated for every gene, and RNA-Seq studies tend to have few replicates.

<u>Solution</u>: "Borrow" information about variance from the other genes to inform the genewise estimates.

<u>Commonly used modeling approach</u> R packages: edgeR, DESeq (DESeq2), etc.

Assumes most genes are not differentially expressed

Count Normalization:

• For each gene, compute:

$$CF_{ig} = \frac{y_{ig}}{\sqrt[n]{\prod_{i=1}^n y_{ig}}}$$

- Then for each sample, compute: $CF_i = median_g\{CF_{ig}\}$
- Finally, normalize the count data for each sample:

$$y_{ig}^* = y_{ig} / CF_i$$

Assumes most genes are not differentially expressed

- Genes with low dispersion estimates are shrunken towards the curve ,and shrunken values are output for fitting of the model and differential expression testing.
- Dispersion estimates that are slightly above the curve are also shrunk toward the curve
- Genes with extremely high dispersion values are not. This is due to the likelihood that the gene does not follow the modeling assumptions and has higher variability than others for biological or technical reasons

Estimate gene-wise dispersion

Fit curve to gene-wise dispersion estimates

Shrink gene-wise dispersion estimates

GLM fit for each gene

 $y_{ig}^{*+} = factor1 + factor2 \dots$ $y_{ig}^{*+} \sim NB$

Likelihood Ratio Test Multiple Test/FDR Correction
edgeR

Gene = g Counts for a gene = r sample = i Sum of counts = R = Library size

Initial Scaling

edgeR: $CPM = \frac{r_{gi}}{R_i} \times 10^6$ $LCPM = \log_2\left(CPM + \frac{2}{R_i}\right)$

edgeR

Dispersion Estimation and Adjustment:

- Similar to DESeq2
- But there is a robust dispersion estimation function which reduces the effect of individual outlier counts, and a robust arguments to estimation so that hyperparameters are not overly affected by genes with very high within-group variance

Model and DE Approach

Also generalized linear model (GLM)
 assuming Negative Binomial distribution

What are the Differences?

Primary Differences

- Methods for "normalization" of counts
- Estimation method for dispersion parameters
 - DESeq (which tends to overestimate dispersion) → higher FDR
- DESeq2 by default (which can all optionally be turned off):
 - it finds an optimal value at which to filter low count genes
 - flags genes with large outlier counts or removes these outlier values when there are sufficient samples per group (n>6)
- edgeR is more flexible, but requires better understanding of what you're doing and why

CAUTION AREAS

Assumes most genes are not differentially expressed

- Approaches are less suitable for comparing libraries that are very different, with many truly differentially expressed genes (e.g. very different tissues)
- Rely on Negative Binomial distribution and dispersion estimation

Transformation Based Methods: Limma w/voom

- Assumes a transformation can get us to an approximate Normal distribution
 - limma w/voom (log CPM)

$$y_{ga} = \log_2 \left(\frac{r_{gi} + 0.5}{R_i + 1.0} \times 10^6 \right)$$
 to avoid zero in numerator to avoid zero in nu

 r_{qi} = count for gene g in library i

$$R_i$$
 = total count in library *i*

Transformation-Based Methods

limma w/voom (log CPM)

 "Different samples may be sequenced to different depths, so different count sizes may be quite different even if the cpm values are the same. For this reason, we wish to model the mean-variance trend of the log-cpm values at the individual observation level, instead of applying a gene-level variability estimate to all observations from the same gene"

Transformation Based Methods: ALDEx2

- Assumes a transformation can get us to an approximate Normal distribution

denominator can be altered based on data (e.g. sparsity differences)

Transformation-Based Methods

ALDEX2

Assume a Bayesian model where counts are drawn from a Dirichlet distribution

 $p[n1, n2, ...]|\sum N = \text{Dir}([n1, n2, ...] + \frac{1}{2})$

 $c_{i,j} = \log_2 (p_{i,j}) - \text{meanlog}_2 (p_j)$

<u>Step</u>		<u>C1</u>	C2	C3	E1	E2	E3
counts + prior		69.5	185.5	70.5	511.5	659.5	462.5
Monte Carlo	1)	2.21e-5	2.94e-5	2.55e-5	1.35e-4	1.32e-4	1.23e–4
Dirichlet	2)	2.13e-5	2.98e-5	2.44e-5	1.25e-4	1.41e-4	1.22e–4
instances	3)	2.61e-5	3.06e-5	2.33e-5	1.16e-4	1.34e-4	1.20e–4
clr transform	1)	6.50	7.58	6.58	9.30	9.48	9.13
	2)	6.45	7.60	6.50	9.19	6.73	7.59
	3)	6.73	7.59	6.47	9.12	9.46	9.07

Transformation-Based Methods

Run traditional statistics (e.g. ANOVA, linear models, etc.)

- limma w/voom post-hoc FDR
- ALDEX Bayesian draws quantify uncertainty and are leveraged for FDR control

<u>Step</u>		<u>C1</u>	C2	C3	E1	E2	E3		
counts + prior		69.5	185.5	70.5	511.5	659.5	462.5		
Monte Carlo Dirichlet instances	1) 2) 3)	2.21e-5 2.13e-5 2.61e-5	2.94e-5 2.98e-5 3.06e-5	2.55e-5 2.44e-5 2.33e-5	1.35e–4 1.25e–4 1.16e–4	1.32e-4 1.41e-4 1.34e-4	1.23e–4 1.22e–4 1.20e–4		
clr transform	1) 2) 3)	6.50 6.45 6.73	7.58 7.60 7.59	6.58 6.50 6.47	9.30 9.19 9.12	9.48 6.73 9.46	9.13 7.59 9.07		
significance test	1) 2) 3)	0.01375 0.01457 0.01349	Mean:	0.014					
FDR adjustment	1) 2) 3)	0.0778 0.0795 0.0761	Mean:	0.078					

Which Method is "Best"?

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

It Depends

The Definitive Guide

O RLY?

@ThePracticalDev

Which Method is "Best"?

- So . . . which method is "best"?
 - It depends
 - on the data and experimental design
 - Assumptions for DESeq2 and edgeR are more stringent
 - AND SHOULD BE EVALUATED WITH EVERY DATASET
 - limma w/ voom or edgeR with quasi-likelihood are computationally MUCH more efficient
 - IMO, it does seem that limma-voom and ALDEX2 do a better job at always being under the nominal FDR (although they can have reduced sensitivity compared to DESeq2 and edgeR)
 - Especially, when the sample sizes are small (n=3 per group), when the fold changes are small, or when the counts are small

Which Method is "Best"?

Results Output Types

Volcano Plots – one per comparison

Results Output Types

Fold-Change vs Normalized Count – one per comparison

Results Output Types

Heatmap – multiple comparisons

Results – Putting Things in Perspective

Thank you for listening!

Questions? lisa.bramer@pnnl.gov

11:00-11:45	Post-differential Expression Analyses (or how to interpret that big ole pile of data you've just generated)	Jason McDermott
10:15-11:00	Statistical Models for Transcriptomics Data	Lisa Bramer
10:05-10:15	Networking Break	
9:25-10:05	Pre-processing of Transcriptomics Data	Rachel Richardson
8:35-9:25	Express Yourself!: Transcriptomics from sample to counts	Bill Nelson
8:30-8:35 a.m.	Introduction	Lisa Bramer

Post-differential expression analyses (or how to interpret that big ole pile of data you've just generated)

Jason McDermott Team Lead, Systems Biology

What's the overall point of postexpression analysis?

General approaches to post-expression analysis

Visualization

- Heatmaps
- Ordination (PCA, etc.)
- Pathway overlay

Enrichment approaches

- Pathway and functional group enrichment
- Regulon analysis
- Interaction enrichment
- Network analysis
 - Existing known interactions
 - STRING, PPIs, regulon, metabolic, etc.
 - Inferred associations

"I really appreciate the artist's post-expression work" @redpenblackpen

What is a 'pathway'?

Pathway Databases

Enrichment?

Enrichment?

Should I be suprised at the number of red rocks I see?

Not surprised

Pretty surprised

Enrichment Approaches

control

Hypergeometric test

Gene Set Enrichment Analysis

Danna, et al. Journal of Proteome Research 2021

How to interpret enrichment results

- Look at how many genes are represented
- Do you want to consider negative enrichment (depletion?)
- Consider p-value (how surprised I am) and magnitude (how much of a difference) together
- Know the type of pathway database you're using
- Mind the background!!!
 - Use an appropriate gene set
 - For comparisons what is being compared to?

McDermott, et al. Cell Reports Medicine 2020

Example Questions That Can Be Asked with Enrichment

- What are the pathways active in condition A versus a control?
- What are the pathways active in condition A versus condition B?
- What are the pathways active in individual samples relative to other samples?
- What are the pathways active in a specific subset of genes (e.g. a particular cluster?)
- What pathways correlate over a range of samples with a measured variable (e.g. CO₂ production?)

Pathway Enrichment Tools

- DAVID (<u>https://david.ncifcrf.gov/</u>)
- GSEA (<u>https://www.gsea-msigdb.org/gsea/index.jsp</u>)
- Enrichr (<u>https://maayanlab.cloud/Enrichr/</u>)
- WebGESTALT (<u>https://www.webgestalt.org/</u>)
- IeapR (<u>https://github.com/PNNL-CompBio/leapR</u>)

Network Analysis

Network analysis

- Existing knowledge framework
- Network inference
- How are proteins grouped?
 - Complexes
 - Pathways
 - Regulons
 - Functional response
- Topology
 - Critical nodes
 - Hubs

Label Description F cluster_6(15): psbA4 E cluster_13(103): apc, cpc, rbc, ccm, E cluster_24(4): hups E cluster_27(4): pstF3.petF4,psb27 E cluster_37(4): pstF.apetF4,psb27 E cluster_15(42): pstF.apetF4,psb27 E cluster_17(28): fstH1,ftsH2,ndhEHI E cluster_17(28): pstF.aphA E cluster_2(90): kalB4,mazE,sigF1, E cluster_2(90): kalB4,mazE,sigF1, E cluster_12(10): groEL,dnaK,ho2, mot5, cluster_2(90): kalB4,mazE,sigF1, E cluster_12(10): ginB,coxABC,hvpA, E cluster_11(70): ginF1, E cluster_11(10): pitgP1 E cluster_11(10): pitgP1 E	5 5 01.570 20970				2	(0.33) (0.33) (0.550) (0.550)			er. 2	eluster					tter_1		z 414	1 1991 1	cec 34	
여이 여인 것 같이 거 나 이 나 나 나 나 아이에	cluster_19 (11): pnt, gnd L9	cluster_10 (10); glgP1 L9	→ cluster_11 (70): kalB3, rpoD, IrtA, L9 gInB, coxABC, hypA	cluster_26 (7): unknown D5	hemN	cluster_12 (14): rlbosome, groES, D5 groEL, dnaK, ho2,	sigF2	<pre>cluster_/(5/): PSL, rpaA, cmp, sigD L5 fileter 2 (90): ValB4 mayE sigE1 11</pre>	cluster_17 (28): feoA2, feoB2, hupL, D1	ruster_is (+2), pspc, hype, poet, tr	diretor 1 E / ADV: mob/ humE moEt 14	▲ cluster_3 (173): PSII, ntcA, sigB, L5 ftsH1_ftsH2_ndhFHT	cluster_27 (4): petF3, petF4, psb27 L1	cluster_24 (4): hupS D1	glgB2	atp, gigA1, gigB1,	Label Description Pat			

Examples of Applications of Network Analysis

Examples of Applications of Network Analysis

Network Analysis Tools

- STRING (<u>https://string-db.org/</u>)
- KEGG (<u>https://www.genome.jp/kegg/pathway.html</u>)
- Cytoscape (<u>https://cytoscape.org/</u>)
- QIAGEN Ingenuity Pathway Analysis (\$\$\$)

- ARACNE/CLR (<u>http://califano.c2b2.columbia.edu/aracne</u>)
- GENIE3 (<u>https://bioconductor.org/packages/release/bioc/html/GENIE3.html</u>)

Data Processing and Formats

Identifiers

- Identifiers
- Identifiers!
- Data matrix format
- Data normalization

Divorce rate in Maine correlates with US per capita consumption of margarine (R = 0.99)

Revenue generated by arcades correlates with number of CS doctorates awarded (R = 0.99)

http://www.tylervigen.com/

Correlation is not always causation

Questions?

Afternoon Session

1:15-2:15 p.m.	Workshop: Formatting and Quality Control	
2:15-2:25	Networking Break	
2:25-3:15	Workshop: Statistics and Diagnostics in pmartR	
3:15-4:00	Workshop: Statistics Edge Cases	