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What is transcriptomics?

What techniques can be used to interrogate a transcriptome?
EST
SAGE
Microarray
RNA-Seq

RNA-Seq study design considerations

Overview RNA-Seq process

Sample preparation

Library preparation

lllumina Sequencing
Sequence data quality checks

Bonus round

Long-read sequencing
Single-cell transcriptomics




Functional genomics

Why transcriptomics?
|dentify expressed genes
« Non-coding genes
Determine changes in gene expression under different conditions
What is Determine regulatory relationships between genes
transcriptomics? Examine splice variants [Eukaryotes]
Transcription start sites; use of alternate promoters
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Other

technologies from
the past

wmmm Sequencing vector
Cloned cDNA
mmm Sequencing primer

Sanger sequencing
— EST




Select cells for profiling - Y Y
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enzyme (Nla Ill)
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th e paSt with tagging enzyme (BsmFl)
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Clone tags into plasmid for @
automated sequencing m
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Extract and count tags to calculate 32 Tags

expression level of each transcript 4 Tags
e 00 Tags

Compare tag counts between libraries
to find differentially expressed genes
and map tags to sequence databases

https://www.researchgate.net/figure/Outline-of-SAGE-approach-for-transcript-profiling_figl 11678335



Other

technologies from
the past

Microarray

Control Sample Experimental Sample
.-r- - i‘fﬁ
OCC O5O

l mRNA extraction l
Reverse Transcription, I
flourescent labeling

s Combine equal amounts
\ and hybridize /

https://bitesizebio.com/7206/introduction-to-dna-microarrays/

Red=up
Green=down
Yellow=same
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Samples of interest Isolate RNAs Generate cDNA, fragment,
size select, add linkers

L IS TR

Condition 1 Condition 2 PAAAAAAANAAAAAAN . . o
(e.g. tumor) (e.g. normal) . " .

. . Poly(A) tail l
The reigning Map to genome, transcriptome,
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Short reads
split by intron

Short insert

100s of millions of paired reads
l 10s of billions bases of sequence

Downstream analysis

By Malachi Griffith, Jason R. Walker, Nicholas C. Spies, Benjamin J. Ainscough, Obi L. Griffith -
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1004393, CC BY 2.5,
https://commons.wikimedia.org/w/index.php?curid=53055894




Experimental

design

Number of samples vs depth of sequence

Sequence depth AP
Complexity of sample .
Total expected length of the transcriptome

* Number of genes
» Length of genes
Expected dynamic range of expression

Replication
5 or more biological replicates is preferable
 Insures against technical failures
Technical variation can be counteracted without additional expense
» Pool parallel preparations before sequencing
 Biological replication

Reference data set

Verification
What other techniques can you use to verify results?
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Preparing for

RNA-Seq

Test RNA isolation technique on non-precious samples
Yields can be low

Stabilization of samples

Snap-freeze samples
RNA/ater®

Contamination

Are there steps you can take to remove contaminants prior to
isolation?

Poly-A enrichment (for eukaryotes)
rRNA depletion

Can comprise up to 98% of RNA content

13



Preparing for

RNA-Seq

Method will depend on choice of sequencing technology

cDNA synthesis
DNA more stable
Allows amplification

Fragmentation and size selection
Produces uniform range of fragments suitable for sequencing

Ligation of primers/adapters
Sequencing primer site
Barcode for multiplexing

Amplification
Enrich for proper construction
Compensate for low input

14
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Fragments Add adaptors Attach to flowcell

Bridge amplification g, * . _"fﬁ‘ ;

Performing RNA-

Bind to primer

Seq

e M

Cluster formation

Sequencing Signal scanning
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Sequence data

assessment

Quality scores across all bases (Sanger / Illumina 1.9 encoding)
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1234567891519 30-34 45-40 80-64 75-79 90-94 110-114 130-134 150-154 170-174 180-194 Z10-214 235-234 250
Position in read (bp)

Sequence quality scores: higher scores are better
Image from FastQC
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Sequence data

assessment

Quality scores across all bases (Sanger / lllumina 1.9 encoding)
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Position in read (bp)

Sequence quality scores: higher scores are better

350-359
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Sequence data

processing

Quality trimming based off quality scores
Eliminate short remainders

Adapter trimming
Low-complexity screen

Screen for ‘contaminants’
rRNA
Host RNA

18



Dataset analysis

Best if reference is derived from the same sample
Metatranscriptomes benefit from deeply sequenced, assembled
metagenome

Reference will typically be the genes, not the genome
Unless there is concern about splice variants

Fast aligners that leverage exact matches
Burroughs-Wheeler aligner (BWA)
Bowtie2

You can do reference-free analysis, but it is more
complicated and limited.

Assemble transcripts

Align reads against transcript contigs

19



Dataset analysis

Read coverage
i

YOLOB&EC
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Dataset analysis

Quantitate by
Gene
Exon
Transcript

1 gene; 4 exons; 3 transcripts

— — e—— .
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Dataset analysis

Normalize by dataset size
Per million reads analyzed

Normalize by target length

Per kilobase of gene length

RPKM - reads per kb per million
PM = total reads aligned/1M
RPM = reads mapped/PM
RPKM = RPM/gene length in kb

FPKM - fragments per kb per million

Accounts for paired-end sequencing

TPM - Transcripts per million
RPK = (reads mapped/gene length in kb)
PM = RPK+./1M
TPM = RPK/PM
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Dataset analysis

Gene

Gene0001
Gene0002
Gene0003
Gene0004
Gene0005
Gene0006
Gene0007
Gene0008
Gene0009
Gene0010
Gene0011
Gene0012
Gene0013
Gene0014
Gene0015
Gene0016
Gene0017
Gene0018
Gene0019
Gene0020
Gene0021
Gene0022
Gene0023
Gene0024
Gene0025

CondlRepl CondlRep2 CondlRep3 Cond2Repl Cond2Rep2 Cond2Rep3 Cond3Repl Cond3Rep2 Cond3Rep3

6286
2425
5027
4802
2222
5744
9849
8584
1223
3177
3291
7427
3801
3318
8256
5674
2717
5793
4827
9283
7857
7079
3880
5104
217

8478
7199
1561
7969
2031
8043
3258
6564
6891
8360
4337
2268
333
3755
962
476
3538
5111
6522
5366
4550
1944
786
9561
8693

2579
8735
9483
2070
7334
3697
5418
7867
5187
9914
8829
4973
6462
1595
2949
312
322
346
5993
2738
8474
5091
7076
855
131

8548
5153
5721
3603
1779
6928
1933
4645
3159
682
128
2128
1362
5437
9523
4731
9158
1232
2353
9583
1900
8256
1994
7164
9236

2746
2287
999
3320
7490
8897
2289
4040
8320
5093
1405
430
562
3642
6939
849
9325
4936
3510
8087
4997
239
7298
8955
12

6401
9552
1304
654
5787
7642
8225
6269
4461
7976
2576
5199
6715
9762
8729
6150
9270
4320
7687
3724
3103
5957
7056
5429
2205

890
8776
3927
4970
5484
1574
6464
9850
5119
6144

601
4994

630
9202
6705
9569
8735
3868

936
3118
5586
7113
1815
5331
5998

8724
5691
9575
6732
3168
4900
1978
7820
5622
8234
9814
3998
928
3177
4026
5112
6213
3537
2227
3029
7392
1800
1296
6118
6902

2784
9166
1711
3824
8653
1742
7949
6141
3070
1781
1585
3845
7195
1967
231
1362
6352
9489
5498
8892
7517
6481
2288
152
7103
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PacBio

sequencing

Nanoscale reaction chambers

Pacific Biosciences — Real-time sequencing

Fhospholinked hexaphosphate nucleotides

Limit of detechion Zone

Flugrescence pulse

INtersily —

Epifluorescence detection

Mature Reviews | Genetics

24



Y
Nanopore DNA sequencing !
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Read position

lonic current

https://www.genome.gov/genetics-glossary/Nanopore-DNA-Sequencing
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Single-cell

transcriptomics
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26






8:30-8:35 a.m. Introduction
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10:15-11:00 Statistical Models for Transcriptomics Data

11:00-11:45 Post-differential Expression Analyses (or how to | Jason McDermott
interpret that big ole pile of data you’ve just
generated)
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Pre-processing of
Transcriptomic Data
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Our definition

After
transcriptomic
counts have been
cross-tabulated for
further analysis

Before

differential
expression analysis
is performed

“Next time, don’t start the presentation by asking,
‘Can you tolerate ambiguity?’!”

30



Our definition

After
transcriptomic
counts have been
cross-tabulated for
further analysis

Before

differential
expression analysis
is performed

Genes/Transcripts

“ MCL1.DG

497097
100503874
100038431

19888
20671
27395
18777
100503730
21399
58175
108664

438
1
0
1
106
309
652

1604

769

Samples

MCL1.DH
300
0
0
1
182
234
515

1495

752

MCL1.DI

65

1

0

0

82

337

948

1721
14
1062

MCL1.D) MCL1.DK
237 354
1 0
0 0
0 0
105 43
300 290
935 928
0 0
1317 1159
4 2
987 995
Counts

MCL1.DL

287

4

0

0

82

270

791

1066

903

MCL1.LA

10
16
560
826

1334
170
1381
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Outlier detection

Quality control
Not every sample or transcript turns out the way we hope!

Understanding why a sample or transcript is showing an unusual trend
IS important

A. Example: Unnormalised data B. Example: Normalised data

Removing non-biological or experimentally irrelevant variation
Lots of variation between individuals of a population
Variations in preparation introduce unwanted variation

Better understanding of the data
Check assumptions before running downstream analyses
Understand why results might look a certain way

32



What is special about transcriptomics?

Big takeawa
Weg need to Co):]sider = Count data | - Binomial | -i0p-05
how RNA data is * Zeros matter! | R
. ' I negative binomial
collected to apply of Potsson distrbutions
appropriate !
preprocessing steps i
= Library size considerations
 All transcript counts in a sample = library Poisson ﬁ;';
» Non-biological variation can change the
o efficiency of read transcription
Thinking ahea‘?‘ » The total number of transcripts in a
What preprocessing library often used as a normalization \\\
steps might be factor
sensitive to zeros? e
Arethese ~ >3mplel
actually —_—

different?




Experimental
Highlights

-6 experimental
groups

-12 total mice
~26,000 annotated
gene transcripts
detected

Citation

Chen Y, Lun ATL and Smyth GK. From
reads to genes to pathways: differential
expression analysis of RNA-Seq
experiments using Rsubread and the edgeR
quasi-likelihood pipeline [version 2; peer
review: 5

approved]. F1000Research 2016, 5:1438
(https://doi.org/10.12688/f1000research.898
7.2)

Basal stem cells (B)

Committed luminal cells in mammary gland (L)
Virgin Pregnant Lactating

*All mice @ and genetically identical
**RNA-seq data generated via lllumina sequencing, 100bp single end reads

34
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Experimental
Highlights

Boxplots of Un-Normalized Transcript Data

-6 experlmental 7 Ordered by Group
5000 1 36406 - - - - - - - -
groups ..
-12 total mice |
~26,000 annotated
gene transcripts
2e+06 4
detected
>~ 3000 Group
8 ﬂ ! E B_virgin
Q g E B_pregnant
> b - B_lactating
o
g U . ° ' L_virgin
u ] — al P ® E L_pregnant
Citation i I B3 Lot
Chen Y, Lun ATL and Smyth GK. From oo T 1 |
reads to genes to pathways: differential .
expression analysis of RNA-Seq * e
experiments using Rsubread and the edgeR 1000+ + ¢ o
quasi-likelihood pipeline [version 2; peer . R T . 8
review: 5 . ; e s o o 8 v ° o o
approved]. F1000Research 2016, 5:1438 t S o e o 3 j_
(7h;t) s://doi.org/10.12688/f1000research.898 toroo ] _I_ _I_ J_ _I_ _I_ _l_ _l_ _l_ _I_ _|_ _I_
1.& 04
0 2500 5000 7500 10000 ? é 2 é (ED, é Lé LSL Lj) 3 § ?
Counts g 22 ¢gggggg gy
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Data exploration
requiring scaling
(or adjustments) For visualizing and data exploration? Absolutely!

For use in differential expression?

-Boxplots/barplots
-Principal component
analysis 5.0 -
-Mean-variance plots <
(a
LSJ’ 2.5
c
2 0.0
0 ‘e
3 e
-2.97 ® &
® o
-5.01 : s =




Common scaling

Counts per million:
CPM

Log counts per million:
LCPM

Reads per kilobase of
transcript per million:
RPKM

Fragments per kilobase
of transcript per million:
FPKM

Reqgularized log - rlog
Variance stabilizing
transformation - vst

Gene =g Counts foragene =r
sample =i Sum of counts = R = Library size
edgeR: Limma-voom:
T,i .
CPM = & x 10° cPM = -2 +0- x 10°
l Ri + 1

edgeR

LCPM = log, (CPM +

2

R;

|

LCPM = log,( CPM)

%
N
Meset o ®
s

*The 0.5 and 2 are arbitrary! Just needs to be a small number ©
**The +1 for voom ensures the proportion is less than 1 in all cases
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What does the transformed data look like?

Boxplots of Un-Normalized Transcript Data

Ordered by Group
30000 't
5‘ 154
c
g 0000
O
Q
o
L
i 0000 10
Scaling can explore
. i Group
visual representations " B8 & o
- 01 ) 2 E B_pregnant
In neW Ways -5 0 5 10 15 [a W . B_lactating
L_-I) 57 | || - L_virgin
I N E L_pregnant
100007 o [ E L_lactating
5 1000 N e
c e
) e —
>S5  —
O 1004
Q
o
L
104 -5 -
| “Ihnuu c 353 854593053
5 0 5 10 15 gg‘égggg%gggg

LCPM Samples 53



Curated data is

not the same as cherry-
picked data

Data exploration can sniff out odd occurrences

The enzymes denatured or did not cooperate
Check the number of reads across the samples

A contamination occurred
Check if there are an unusual number of
transcripts observed or not observed in the samples

The labels for two mice might be mixed up
Check if the transcript profiles are similar to
expected groups

S # S
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&

When should | be alarmed?

Library Size by Sample Library Size by Sample

Grapher Beware: o | pueastzeror e sanpe ey
Pay attention to the - h
scale of number of @ &
reads too, not just the S §
similarity of total reads [ o

B iseor § 1.50+07

2 2

_GNJ Qoo
Note: > 2
The total number of © 50000 @ soee
reads can be plotted = 2
without transformation .

Samples Samples

Hot tip: Some sequencing software might flag this earlier,
check with your analysts
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Grapher Beware:
Pay attention to the
scale of number of
reads too, not just the
similarity of total reads

Note:

The total number of
reads can be plotted
without transformation

When should | be alarmed?

N Non-zero Biomolecules

15000

10000 4

5000 -

T T T T T T T T T T T T

MCL1.DG

MCL1.DH

MCL1.DI

MCL1.DJ

MCL1.DK

MCL1.LC

MCL1.LD

MCL1.LE

MCL1.LF

N Non-zero Biomolecules

30000 4

200001

10000 -

MCL1.DG

MCL1.DH

MCL1.DI

MCL1.DJ

MCL1.DK

MCL1.DL
MCL1.LA
MCL1.LB

wn
Q
3
j=i
D
7

MCL1.LC

MCL1.LD

MCL1.LE

T T T T T T T T T T T T

MCL1.LF
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Principal Principal Components (GLM-PCA) Principal Components (GLM-PCA)
Component
Analysis (PCA)
Typically requires
normal data, doesn’t s 3
work well with raw _
counts! -
2
AN AN W vigin
Other PCA & &
methods ..
-PCAHubert A A
-GLM-PCA T !
-Sparse PCA
. PC1 PC1

42



Preprocessing
Transformation
Data exploration
Filtering

You are Here

THERES NOWHERE
IDRATHER BE
THAN WITH YoU
HERE
RIGHT NOW.

@?

Normalization?
Differential expression?

Are we
ready to be
Here?

43



Know thyself
Statistical analyses
almost always come
with assumptions about
what the data looks like

Staple differential
expression

methods
 DESeq2

* |imma-voom
* edgeR

Now what?

= Preprocessing
 Transformation
- Data exploration
* Filtering

You are Here

THERES NOWHERE
IDRATHER BE
THAN WITH You
HERE
RIGHT NOW.

@?

=Normalization?
= Differential expression?

44



Note

Despite the same
assumptions, DESeq2
and edgeR take
different
normalization
approaches

» Transcripts need to
be observed in 2+
samples

* Low count levels
can mess up ratios
and quantiles

DESeq2 and edgeR: Counts, negative binomial distribution,
assumes that most genes are not DE and normalizes as such

Limma-voom: Counts, linear weighted model, resulting test
statistics are approximately normally distributed

- Binomial  n=10 p=0.5 2

| s |
o
1

Expression (log2 scale)

Relies heavily on ratios and distributions

(More on these in our next talk!) 45



At least 2 non-
zero samples is a
good idea for
analysis — often

more required to
assure the
biomolecule is
represented in all
groups

Count of Transcripts

Count of biomolecules observed in at least X number of samples

20000

18000 -

16000 -

21392

20338

19656

19115

18602

18111

17613

17107

16594

16034

15350

14483

5

6

7

8'

9

Number of Samples

T
10

T
1M

12

46



Recommendation
from the top

At least 15 counts
across all samples

AND/OR

~10 counts per
sample with library
size taken into
account

Observation Densities

e
o
o

Observation Density by LCPM

15+ total counts per transcript

Observation Densities

=]
[N]
N

0.0

Observation Density by LCPM
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Boxplots of Un-Normalized Transcript Data

Ordered by Group
q
30000 15 -
10 A
> 20000 E
O (ol
c O ..
Before g -
10000 A
3 ‘
o
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o s — 54
5 0 5 10 15
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Boxplots of Un-Normalized Transcript Data
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] ]
> 15 : J e l I s : °
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Other caveats

-Batch effects
-lterative data
exploration

Other data
exploration
methods may be
just as useful!

Recap
Transformation methods of visualization and data exploration

Data exploration via
Boxplots
Library size
Genes detected per sample
Principal component methods
Expression counts

A touch of info on popular differential expression methods

49









8:30-8:35 a.m. Introduction

8:35-9:25 Express Yourself!: Transcriptomics from sample | Bill Nelson
to counts

9:25-10:05 Pre-processing of Transcriptomics Data Rachel Richardson ®

10:05-10:15 Networking Break _
10:15-11:00 Statistical Models for Transcriptomics Data

11:00-11:45 Post-differential Expression Analyses (or how to | Jason McDermott
interpret that big ole pile of data you’ve just
generated)




EMSLY

Day 4
Transcriptomics

Modeling and
Statistics

Lisa Bramer

HOW TO DETECT A CHANGE IN THE SLOPE OF YOUR DATA

NOVICE METHOD EXPERT METHOD:

HEY LOOK, IT
BENDS HERE

DO A BUNCH OF STATISTICS



Instructor Intro

e Senior Statistician
e Computational Biology Group
« Team Lead of Biostatistics
and Data Science
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Our definition

After transcriptomic
counts have been
cross-tabulated for

further analysis

Before differential
expression analysis
Is performed

Genes/Transcripts

“ MCL1.DG

497097
100503874
100038431

19888
20671
27395
18777
100503730
21399
58175
108664

438
1
0
1
106
309
652

1604

769

Samples
MCL1.DH MCL1.DI MCL1.D) MCL1.DK
300 65 237 354
0 1 1 0
0 0 0 0
1 0 0 0
182 82 105 43
234 337 300 290
515 948 935 928
1 0 0 0
1495 1721 1317 1159
2 14 4 2
752 1062 987 995
Counts

MCL1.DL
287

270
791

1066

903

MCL1.LA

10
16
560
826

1334
170
1381
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Transcriptomic counts have been cross-tabulated for

further analysis

Preprocessing

WE REALIZED
ALL DUR DATA
IS FLAVED

;

GOOD

.50 WERE NOT
SURE ABOUT OUR
CONCLUSIONS.

)

BAD

.50 WJE DID LOTS
OF MATH AND THEN
DECIDED OUR DATA
WAS ACTUALLY" FINE.

O/

A

[ VERY BAD

.50 VE TRAINED
AN Al To GENERATE
BETTER DATA.

/

Data Modeling: differential expression analysis is

performed




HEY, LOOK, WE HAVE A BUNCH
OF DATAL I'M GONNA ANALYZE IT.

NO, YOU FooL! THAT WILL
ONLY CREATE MORE DATA!

57
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Library size considerations
All transcript counts in a sample = library
Non-biological variation can change the efficiency of read transcription
The total number of transcripts in a library often used as a normalization

factor

Lib. 1 Genel: 5 Lib. 2 Genel: 2
Gene2: 10 Gene2: 5
Gene3: 200 Gene3: 100
Total: 10M reads Total: 5M reads

*2-fold changes in expression would be expected
across all genes for identical samples

58



Common scaling

Counts per million:

CPM

) t " Gene =@ Counts foragene =r
og counts per million: _ . .
gLCpM d sample = | Sum of counts = R = Library size

Reads per kilobase of _
transcript per million: edgeR: Limma-voom:

RPKM Tgi T, + 0.5

CPM = Ri x 10° cpM = 9 % 106

Fragments per kilobase L Ri + 1

of transcript per million:

2 _
LCPM = log, (CPM +R_> LCPM = log,( CPM)
i

edgeR

%
N
oo o ®
y
.

Regularized log - rlog
Variance stabilizing *The 0.5 and 2 are arbitrary! Just needs to be a small number ©
transformation - vst +The +1 for voom ensures the proportion is less than 1 in all cases




Major among-individual differences for some transcripts can
affect perceived differences for other transcripts.

A Different Solution?
TMM (Trimmed mean of M-value normalization)

Y k /j\.Tk count for gene g in library k divided by total counts in library k

M_=lo -
g 52 |qu’ /N k’ | count for gene g in ref. lib. divided by total counts in ref. lib.

Calculate a trimmed across-gene mean of M

Identifies scaling factors (one for each library), which minimize log-fold changes
between samples for most of the genes.

Assumption: Most of the genes are not differentially expressed in the biological
sense, which is why basing the scaling factors on a trimmed mean of log fold

changes is justified.
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AN

NORMAL DISTRIBUTION

A A A A A A A
PARANORMAL DISTRIBUTION

Normalize = Model assuming data follow Normal/Gaussian
distribution

Limma-voom

TMM

ALDEXx2 — Bayesian compositional approach
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*Want to test whether the mean number of reads for gene X
drawn from sample type A differs from the number drawn from
type B

Poisson Distribution
Discrete value distribution

0.40 @ General Interpretation: number of events

0.35] | ° A=l occurring in a fixed interval of time or space

0.30 ¢ A= (events occur with a constant mean rate and
-0.25 ° A=10 independently of the time since the last event)
% 0.20} Lo @ Parameters: A >0
. )

015 o 1 @ Support: k € {0.1,2,3,...}

0.10 | 7 e , oy AkeA

o0sf 1 & e "o ® PMF: p(x = k) = =g

0.00L2 o % D\C"Et _ @ Mean: A

0 10 15 20 _
K @ Variance: A
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T T T
15 20 0

Sample
A = mean = variance

L

20
0

lambda = 1 lambda =3
40 1
30
o ‘ ”
101 ‘ I
ALLE QLI
=
2 lambda = 5 lambda = 10
4]
401
30 1
20 1
A, AT
I ] I I L] I
0 5 10 5 10 15

*Early RNA-seq studies:
Based on technical replicates, Poisson is a good approximation




count

800

600

400

200

4 0 A 8 12
log(X)

Are the data Poisson distributed-?
If not, how do they deviate from the expectation?




20

log(s®)

A 0 A 8 12
log(X)

count

800
600
400

200

RNA-Seq data are
overdispersed...

Need a different distribution

*For biological replicates, variance > mean

(especially for high counts)
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The Negative Binomial Distribution

*Discrete distribution with additional variance parameter

|0.1Cl-

0.08}
0.06}

0.04

0.02} °

r =10

10

15

@ Variance:

@ General Interpretation: number of successes in
a sequence of independent and identically
distributed Bernoulli trials before a specified
number of failures, r, occur

@ Parameters: 0< p<1,r>0
@ Support: kK € {0,1,2,3,...}

k+r—1

OPMF:P(Xk)( p )pk(l—P)’

@ Mean: -2

1-p

(1—p)?
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*Discrete distribution with additional variance parameter

Alternative Parameterization

Pr(X=k)=|  o_=»

bl 1 (u)(?‘;_“) o2 —p\"

.

72

mu = 1, low var

mu = 10, low var

mu = 1, high var
60
40+
204
o U™ .l
= .
> :
o mu = 10, high var
(&1
60 -
40 +
20+
| TRITR PR A P
0 : L] Ill 1 : 2 :
0 10 20 30 40

J I L]

]
o0 0O 10 20 30 40
Sample

o2
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Differential Expression Analysis

The Negative Binomial Distribution

Problem: Variance must be estimated for every gene,
and RNA-Seq studies tend to have few replicates.

Solution: “Borrow” information about variance from the
other genes to inform the genewise estimates.

Commonly used modeling approach
R packages: edgeR, DESeq (DESeq2), etc.
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DESeq?

= Assumes most genes are not differentially expressed

Count Normalization:

* For each gene, compute:
dispersion 9 nmmn
\/Hi:1 Yig
Fit curve to gene-wise
dispersion estimates * Then for each sample, compute:

CF; = median,{CF;4}
Shrink gene-wise
dispersion estimates

« Finally, normalize the count data for each
sample:

yi*g = yig/ CF;

GLM fit for each gene




DESeq?

= Assumes most genes are not differentially expressed

Estimate size factors

Estimate gene-wise For each gene, estimate « in:
dispersion . - O\ 2
Va?’()’g) =Yg T “(3’9)

Fit curve to gene-wise
dispersion estimates

Shrink gene-wise
dispersion estimates

GLM fit for each gene




Genes with low dispersion estimates are shrunken towards the curve ,and
shrunken values are output for fitting of the model and differential
expression testing.

Dispersion estimates that are slightly above the curve are also shrunk
toward the curve

Genes with extremely high dispersion values are not. This is due to the
likelihood that the gene does not follow the modeling assumptions and has
higher variability than others for biological or technical reasons

Estimate size factors

100

* MLE
* prior mean
* MAP

0

Estimate gene-wise
dispersion

1

Fit curve to gene-wise

dispersion estimates

thspersion ashmale
0
L
-
L2
"
£4
L
-
L3
B

0.001 0.01

100 10000

GLM fit for each gene

man of normalized counts



DESeq2

y{“; = factorl + factor?2 ..
Estimate gene-wise
dispersion
Fit t wise
Likel_ihood Ratio Test |
Multiple Test/FDR Correction

Shrink gene-wise
dispersion estimates

Vig ~NB

GLM fit for each gene




Gene =g Counts foragene =r
sample = | Sum of counts = R = Library size

Initial Scaling

edgeR:
7".
CPM=§><106

I

2
LCPM = log, (CPM +R—)
i




edgeR

Dispersion Estimation and Adjustment:

« But there is a robust dispersion estimation

function which reduces the effect of
dispersion individual outlier counts, and a robust
arguments to estimation so that
hyperparameters are not overly affected
spersion estimates by genes with very high within-group
variance
Shrink gene-wise

dispersion estimates Model and DE Approach

» Also generalized linear model (GLM)
assuming Negative Binomial distribution




What are the

Differences?

Methods for “normalization” of counts

Estimation method for dispersion parameters
DESeq (which tends to overestimate dispersion) = higher FDR

DESeqg2 by default (which can all optionally be turned off):
it finds an optimal value at which to filter low count genes

flags genes with large outlier counts or removes these outlier values
when there are sufficient samples per group (n>6)

edgeR is more flexible, but requires better understanding of
what you’re doing and why



Assumes most genes are not differentially expressed

Approaches are less suitable for comparing libraries that are very
different, with many truly differentially expressed genes (e.g. very
different tissues)

Rely on Negative Binomial distribution and dispersion
estimation

1e-04 1e-02 1e+00

dispersion

. ?ene—e st
e fitted

4 e ce—ieae e final

1e-08 1e-06

I I I I
1e-01 1e+01 1e+03 1e+05

mean of normalized counts




Assumes a transformation can get us to an approximate

Normal distribution
limma w/voom (log CPM)

Irgtl

+ 0.5

Yga = IDEE (R

+ 1.0

T’gg'

R;

to avoid zero in numerator

% 10°

To ensure fhat this quotient is
>0and <1

= count for gene g in library i

total count in library i



Transformation-

Based Methods

limma w/voom (log CPM)

“Different samples may be sequenced to different depths, so different
count sizes may be quite different even if the cpm values are the
same. For this reason, we wish to model the mean-variance trend of
the log-cpm values at the individual observation level, instead of
applying a gene-level variability estimate to all observations from the

Sqrt( standard deviation )
00 02 04 06 08 10 1.2

same gene”

voom: Mean-variance trend

gene-wise gene-wise
mean-variance trend mean-variance trend
~ sgrt standard
deviation for | .
observation 2, VB,
™ sqrt standard ddviation
observation 1, /g,
lowess fit
log2 count for log2 count for
Ebservalmn 2, ?bservahon 1,
Kg2 Kg1
T T T T T T T T T T T T T T T T T T
4 6 8 10 12 14 4 6 8 10 12 14 4 6 8 10 12 14

Average log2(count size + 0.5) Average log2(count size + 0.5)

Fitted log2(count size + 0.5)



Assumes a transformation can get us to an approximate
Normal distribution
ALDEX2 (compositional approach)

g T €
clr(yig) = In— 3:9
\/Hi=1 Yig T €




ALDEX2

Assume a Bayesian model where counts are drawn from a Dirichlet
distribution

pnl,n2,...]>. N=Dir ([nl, n2,...] + %)

¢;; = log, (p;;)—meanlog, (p;)
Transformation- Step B C2 C3 E = E3

Based Methods

counts + prior 69.5 185.5 70.5 511.5 659.5 462.5
Monte Carlo 1) 2.21e-5 2.94e-5 2.55e-5 1.35e-4 1.32e-4 1.23e-4
Dirichlet 2) 2.13e-5 2.98e-5 2.44e-5 1.25e-4 1.41e-4 1.22e-4
instances 3) 2.61e-5 3.06e-5 2.33e-5 1.16e-4 1.34e-4 1.20e-4

1) 6.50 7.58 6.58 9.30 9.48 9.13
clr transform 2) 6.45 7.60 6.50 8.19 6.73 7.59
3) 6.73 7.59 6.47 9.12 9.46 9.07




Run traditional statistics (e.g. ANOVA, linear models, etc.)
limma w/voom - post-hoc FDR
ALDEX — Bayesian draws quantify uncertainty and are leveraged for

FDR control
Step Cci C2 c3 E1 E2 E3
counts + prior 605 1855 705 5115 6595 4625
Transformation- Monte Carlo 1) 2.21e-5 2.94e-5 2.556-5 1.35e-4 1.32e-4 1.23e—4
Dirichlet 2) 2.136-5 2.98¢e-5 2.446-5 1256-4 1.41e-4 1.22e-4
Based MethOdS instances 3) 261e-5 3.06e-5 2.33e-5 1.16e-4 1.34e-4 1.20e-4

1) 6.50 7.58 6.58 9.30 9.48 9.13
clr transform 2) 6.45 7.60 6.50 9.19 6.73 7.59
3) 6.73 7.59 6.47 9.12 9.46 9.07

1) 0.01375
significance test 2) 0.01457 Mean: 0.014
3) 0.01349

1) 0.0778
FDR adjustment 2) 0.0795 Mean:| 0.078
3) 0.0761




R%0.06

REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
TOo GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NEW CONSIELLATIONS ON IT.




Which Method is “Best™?

= S0 ...which method is “best”?

* It depends
» on the data and experimental design
« Assumptions for DESeg2 and edgeR are more stringent
« AND SHOULD BE EVALUATED WITH EVERY DATASET

* limma w/ voom or edgeR with quasi-likelihood are computationally
MUCH more efficient

* IMQ, it does seem that limma-voom and ALDEX2 do a better job at
- always being under the nominal FDR (although they can have
It Depeﬂds reduced sensitivity compared to DESeq2 and edgeR)

The Definitive Guide « Especially, when the sample sizes are small (n=3 per group),
when the fold changes are small, or when the counts are small

O RLY? @ThePracticalDev




False discoveries

(a) equal library sizes

40

20

— Yoom
— limma trend
PoissonSeq
- = edgeR classic
= = edgeR glm
DESeq
DSS
baySeq
limma notrend
t—test
TSPM

|
0 40 80 120

Genes chosen

(b) Unequal library sizes

voom
limma trend
edgeR gim
edgeR classic
PoissonSeq
baySeq
DESeq

limma notrend

- t-test
DSS
TSPM

Genes chosen




Volcano Plots — one per comparison

—log10(Pvalue)




Results Output Types

= Fold-Change vs Normalized Count — one per comparison

log-fold-change

Average log CPM




Heatmap — multiple comparisons

Cluster analysis of differentially expressed genes
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Post-differential Expression Analyses (or how to
interpret that big ole pile of data you’ve just
generate)




e’

EMSL®

Post-differential
expression

analyses

(or how to interpret
that big ole pile of data
you’ve just generated)

Jason McDermott
Team Lead, Systems Biology




What’s the overall
point of post-

expression
analysis?

’?!*

Hn'a\s ‘H\fovj\ Pv*
b(o(og"m‘
data

Tell me Jour Secvets,
WHAT ARE YoU HiDING 7!
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= Visualization
* Heatmaps
* Ordination (PCA, etc.)
» Pathway overlay

= Enrichment approaches

- Pathway and functional group
General enrichment

approaches t_O - Regulon analysis
post-expression « Interaction enrichment

el = Network analysis
- Existing known interactions

« STRING, PPIs, regulon,
metabolic, etc.

* |Inferred associations

o really appreciate the
avtists post-expression work”
@vredpenbluckpen



What is a

‘pathway’?
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Cangnical? Prok/EuK

Gene Ontology (60)
KE 66

Pathway CoG

Databases

Reactome

Biocarta

MS16DB
DAV LD
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Should | be §U rised aT
e now ber  of Y‘eo\ rocks | see

Enrichment? \
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Enrichment?
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Enrichment

Approaches

ratny A 00 OO 000
pathway B O000O0
miy ¢ 00000000
pathway N () O C O OO0

Differential expression
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Hypergeometric test
(DAVID, etc.)

Gene Set Enrichment Analysis
(GSEA)

Danna, et al. Journal of Proteome Research 2021
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How to interpret
enrichment

results

Look at how many genes are represented
Do you want to consider negative enrichment (depletion?)

Consider p-value (how surprised | am) and magnitude (how much of a
difference) together

Know the type of pathway database you’re using

Mind the background!!!
» Use an appropriate gene set
« For comparisons what is being compared to?

McDermott, et al. Cell Reports Medicine 2020

B phosphoproteomics  [©
B proteomics -
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Example
Questions That

Can Be Asked
with Enrichment

What are the pathways active in condition A
versus a control?

What are the pathways active in condition A
versus condition B?

What are the pathways active in individual
samples relative to other samples?

What are the pathways active in a specific
subset of genes (e.g. a particular cluster?)

What pathways correlate over a range of
samples with a measured variable (e.g. CO,
production?)
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DAVID (https://david.ncifcrf.gov/)

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp)
Enrichr (https://maayanlab.cloud/Enrichr/)
WebGESTALT (https://www.webgestalt.org/)

leapR (https://github.com/PNNL-CompBio/leapR)

Pathway

Enrichment Tools
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Network analysis
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Network inference

How are proteins grouped? .\zlx
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McDermott, et al. Molecular Biosystems 2011
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Examples of

Applications of
Network Analysis

McDermott, et al. Molecular Biosystems 2011
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Examples of
Applications of

Network Analysis

Ido1/Tnfrfs1b
module

McDermott, et al. BMIC Systems Biology 20186
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STRING (https://string-db.org/)
KEGG (https://www.genome.jp/kegg/pathway.html)

Cytoscape (https://cytoscape.org/)
Network Analysis QIAGEN Ingenuity Pathway Analysis ($$9)

Tools

ARACNE/CLR (http://califano.c2b2.columbia.edu/aracne)
GENIE3 (https://bioconductor.org/packages/release/bioc/html/GENIE3.html)
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= Data matrix format data MU“S Mﬁ'
= Data normalization

Data Processing

and Formats
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Divorce rate in Maine correlates with US per capita consumption of margarine (R = 0.99)

Divorce rate in Maine
Per capita consumption of margarine (US)

4

Divorces per 1000 people

— ;
T

3
T T T T
2000 200 2002 2007 2008 2009

Correlation is not
always causation

Total revenue generated by arcades [(US)
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http://www.tylervigen.com/
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Afternooh Session

1:15-2:15 p.m. Workshop: Formatting and Quality
Control

2:15-2:25 Networking Break

2:25-3:15 Workshop: Statistics and Diagnostics in -

pmartR

3:15-4:00
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