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Machine

Learning Myths

Problem

The Al Fairy

waves a magi
+« wand! Iﬁ'

Results

Equivalently: “Can we
use Al to understand X?”



Problem

- Scientific or Mission Goal
- Data — you need data to learn

_ - Quantitative metrics — you
Requirements need to know if you are
for Success getting closer to success

- Partnership — between data
scientist and domain
scientist/subject matter expert

Results

Equivalently: “Can we
use Al to understand X?”




Machine Learning is a
subset of Al, and builds a
model based on training
data to make predictions

Data Science is a subset of
Al. It is an area of statistics,
scientific methods, etc. to
extract meaning and insights
from data..

Data
Science

©STUDYOPEDIA All rights reserved

https://studyopedia.com/data-science/difference-datascience-machinelearing-ai-dl/

Artificial
Intelligence

Machine
Learning

Artificial Intelligence
means creating smart
machines to mimic human
behavior

Deep learning is a subset
of ML, a class of ML
algorithms to solve
complex problems.

Artificial intelligence, machine learning and data science. Retrieved from "Data Science: Concepts and Practice" by Kotu, V., Deshpande, B. (2019). (2 ed.): Morgan Kaufmann. p. 3.


https://studyopedia.com/data-science/difference-datascience-machinelearing-ai-dl/

Artificial Intelligence

Internal

computations Defining Al
A
Thinking Thinking
humanly rationally
Acting Acting
humanly rationally
v
Observed «¢ >
outputs Human Optimal

behavior behavior

“The theory and development of
computer systems able to perform
tasks that normally require
human intelligence, such as
visual perception, speech
recognition, decision-making, and
translation between languages.”



Two Historical Classes of Al

Symbolic

Handcrafted knowledge, rule-based
systems, formal logic, causal models,
ontologies

Largely driven by human-coded
representations of prior knowledge

Statistical

 LEESEDOL

-+200:01:00

Machine learning, probabilistic
models, inductive inference

Largely driven by observational data




What is Machine Learning?

ML algorithms build on statistical patterns observed in data

Types Of ML Models: Artificial Intelligence
* Linear / Logistic Regression

« Random Forests Machine Learning
» Support Vector Machines

» Bayesian Models Deep
Learning
 Neural Networks




Question
Answering

Machine Computer Generative Art Reinforcement
Translation Vision learning And More!




A computer program is said to learn from
experience E with respect to some class of

tasks T and performance measure P

if its performance at tasks in T, as measured by P,
improves with experience E.

— Tom Mitchell, Machine Learning, 1997




Example Problem: Handwriting Recognition

Task (T): Recognizing and classifying handwritten numbers within images
Performance measure (P): Percent of numbers correctly classified
Experience (E): Database of handwritten numbers with given classifications

-,

3

IIIII

lllll

label

IIIII

IIIIII

IIIIII

IIIII

!!!!!

IIIII

IIIII

IIIII

IIIII

IIIII

IIIII

label

IIIII

IIIII

label

IIIIII

IIIII

!!!!!

IIIII

IIIII

llllll

IIIII

label: 2
s
label: 2
A
label 2
A
label: 2
Z
label: 2

label: 3
3
label: 3
3
label: 3
3
label 3
3
label: 3

IIIII

IIIII

label

IIIII

IIIII

IIIIII

IIIII




How Does Machine Learning Work?
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Learning Example : Decision Trees

Task: Determine ifBil wil [ IDEIICHETE e

play tennis given weather D1 Sunny Hot High Weak No
observations D2 Sunny Hot High Strong No
Performance Metric: D3  Overcast Hot High Weak Yes
Prediction accuracy D4 Rain Mild High Weak Yes
Experience: Past D5 Rain Cool Normal Weak Yes
observations D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.



Learning Example: Data Preprocessing and Feature
Engineering

- Many learning algorithms take a set or sequence of vectors as input

+ Raw data needs to be encoded in this format
« For many data types, there are existing encoding conventions

- Feature engineering uses domain knowledge to create these encodings

* Highly manual and time consuming
* Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook: {sunny, overcast, rain} or
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or

RGB image from TennisCam

Temperature: {hot, mild, cool} or
{hot, warm, mild, cool, cold} or
{-20F, -19F, ..., 114F, 115F} or
continuous




Learning Example: Decision Trees

General approach:

No

« Split the data based on
information theory (entropy) No
- Entropy measures the Yes
distribution of positive and Yes
negative examples in each block Viae
» Greedy search through attribute No

(feature) space
Yes
No
Gain= Entropy _Sum of Entropies Yes
all data after split

Yes
Yes
Yes
Yes

D14 Ran  Mid  Hgh  Swong  No

G=0.247 G=0.029 G=0.152 G=0.048




Learning Example: Decision Trees

(Day 15) What will happen on a sunny, cool,
humid, windy day?

%
2

‘Overcast

Many design decisions affect
performance:

 Training data (hnumber and quality of
examples)

%

« Which variables describe the data
» Splitting criterion

 Binary versus multivariate splits

» What to do with numeric variables
- Stopping criterion




What’s the Question?

« Machine learning models are often just a component of a larger system you
must clearly define what you want to get out of the ML model itself.

* For a model to be effective it must answer the correct question.
«  Where does it fit in the larger system?
*  What task does the model accomplish?

» QOther considerations:

+  What domain knowledge is relevant?
What data is available?




Who Knows your Problem?

- ML experts know models
- ldentify approaches given a task and data
*  Process data for models
* Develop and train models

« SMEs know the domain details
- What the raw data looks like
* How the physical sensor/system works
- What the general goals of their field are

» Mission SMEs know the mission
*  What the real-world goal is
*  What success looks like when applying the whole system




Types of Machine Learning Problems

Meaningful
Compression

Structure Image

) e Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
-
I I a.c h I n e Population

Growth
Prediction

Recommender Unsupervised SuperVISed

Systems

Clustering Regression
Targetted

Marketing Market

Forecasting

Customer

Segmentation L e a_ r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks



Supervised Learning

« “Supervised Learning is when the
algorithm gets a copy of the answer
key.”

* Requires labeled datapoints
* Number of examples depends on task m
and algorithm

* More is always better!

* Supervised models trained on
representative data
* New inputs/outputs look like old
inputs/outputs

- No guarantee you can generalize to
new types of data
or new parts of the input space




COVID-19 detection from chest x-rays

» Binary classification: is pneumonia due to Covid-19 or other causes?

* Results:
* 98% accuracy
* 98% sensitivity, 97% specificity

Input layer Convolutional layer Fully Connected layer Output layer

COVID-19

NON-COVID-19

COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID (2022)

https://link.springer.com/article/10.1007/s42600-020-00120-5



AlphaFold

Predicts 3D protein structure with transformers
* Inputs: sequences

Outputs: cartesian coordinates of folded protein

Transformer applied to embeddings of sequence and

structure
e
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"Highly accurate protein structure prediction with AlphaFold," Nature, 2021. https://www.nature.com/articles/s41586-021-03819-2
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Unsupervised Learning

 Inputs -> ???
- What if we don’t have any labels?
» Replace outputs with another goal

- Many different approaches:

» Autoencoders
(Capture regularities through data compression)

 Clustering algorithms
(Group by similarity)

+ Semi- & Self-supervised learning
(Create your own labels!)

* Generative Adversarial Networks
(Create new examples to drive training)

 Useful for many tasks, including anomaly detection
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Autoencoder

» Unsupervised models learning
latent representations are often Input
used as part of supervised

Latent

Representation Output

methods

Feconstruction T

« With an auto encoders the Goal is Loss
to reduce the dimensionality of
the input and recover it

- Dimensionality reduction is at
heart a data compression strategy 'k E
* Neural networks can learn very __‘

rich representations of data

Original Reconstruction




Generative Adversarial Networks

- Essential idea: Connect two models with competing objectives

* Generator: Create realistic data
- Discriminator: Distinguish between real and generated data

Real Data

Generated Data

Real?

Discriminator —)

Generated?
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Reinforcement Learning

» Learns from trial and error

* Reinforcement learning
Is based on rewarding desired
behaviors and/or punishing
undesired ones

* Goal is to learn a policy - that
maximizes the expected
reward according to a value-
function

https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf




What is Deep Learning?

- Specific subset of machine learning P
algorithms rtificial Intelligence

- Made from successive layers
composed of simpler models. The
“deep” learning refers to these

layers of the model Deep
Learning

* Achieves state-of-the-art
performance in many domains




ML vs DL: Traditional ML Pipelines

Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models



https://arxiv.org/ftp/arxiv/papers/1706/1706.06689.pdf

ML vs DL: End-to-End Learning

Goh et al. (2017). Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models

31


https://arxiv.org/ftp/arxiv/papers/1706/1706.06689.pdf

Why Deep Learning and Why Now?

« Compute

Deep learning models are significantly more computationally expensive
compared to their classical ML counterparts. Until recently, computing
resources could only train very simple models. Modern GPU resources
have greatly expanded the scale of models that can be trained.

e Data

Bigger models require more data to successfully train. The availability of
massive and carefully annotated datasets has allowed deep learning to
show its effectiveness on a wide variety of models.

 Code

Many new tools have been developed that abstract basic algorithms and
allow more developers and researchers to leverage compute resources to
train models on massive datasets without needing to worry about low level
implementation details.
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OmniScreen:

Friend or Foe?

= Defense Advanced Research Projects

Agency (DARPA) issued a “Friend or
Foe challenge:

- Can we isolate pathogens without
altering the sample of phenotype? (1)

Unknown bacteria can be introduced to
human immune cells and an immune
response can be validated by a

skilled microbiologist expert

using microscopy

The OmniScreen project aims to create
a machine learning model for
microscopy images that will automate
the classification of pathogenic and
non-pathogenic bacteria

36



Part 1 is to enrich for the pathogenic phenotype

Part 2 is to challenge the potentially pathogenic bacteria to
human cell lines

Part 3 is to evaluate the if the bacteria was pathogenic to the
human cells using microscopy

Part 4 (future work) is to evaluate if the bacteria was
pathogenic to the human cells using proteomics

37



Part 1:
Pathogen

Extraction and
Enrichment

A potential pathogen is a needle in a haystack

Enriching for pathogens simplifies detection

Enrichment

Pathogens display phenotypes
related to virulence

Interrogate a mixture limited to the
species most likely to be
pathogenic

Increase the likelihood of finding a
single pathogen

Activity based probes (ABPs)
applied to living microbes

38



The isolated bacteria is labeled with a probe and added
to either the lung or gut cell line

Gut and lung cell lines were challenged by 45 bacterial
strains that are known friends and foes

Part 2:
Challenge the

Macrophage Dendritic
cell

Cell Lines

Images generated every
hour up to 8 x 96 well
plates

Unknown
bacteria

AS549/HCT116
ERK-Fral cells

39



Part 3:
Evaluate

Pathogenicity

Images were taken every 24 hours for several days

Here, we can see healthy growing cells are seen to adhere
strongly to the dish, but sickly cells lose structural integrity
and start to lift away from the dish

However, because of the amount of time it takes an expert to
evaluate the pathogenicity a machine model was developed
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Why a machine learning model is applicable here

= The experiment design was able to have
ground truth information by introducing known
pathogen and non-pathogen bacteria

= There were a total of 14,000 images taken for
training the model

= There is a well-defined question that is being asked
= “Is there an immune response to bacteria?”

= A convolutional neural network (CNN) model was
An example image from microscopy (1) used

41



Overview of Convolutional Neural Network (CNN)

_E

0 0

0 0 . 0

0 0 . 0 0

0 0 . 0 0

0 . 0 0

A = = CNN is often used for image processing
models

o 0 o o Ml = It is good at learning pattens and then
P 5. evaluating if those pattens are found

03?.00 0

(Simplified) matrix of receptive field

LN

https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6

42


https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6

OmniScreen CNN Model Architecture

Correct-by-construction neural networks
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Are lung cells
confluent?

—_—

Are lung cells
lifting?

Are colon cells
confluent?

Are bacteria
swarming?
e

Correct-by-construction neural networks
label features
in host-pathogen interaction data

ML-Discovered Feature Count

Time-Series
Analysis

NN NN

|

Cytotoxic Pathogen

Detected from Relative Pathogenicity

High-Throughput Scoring

Screen

AS4SERKFRAL  AG49ERKFRAL AS49ERKFRAL
Confluence Cytotokicity  Immune  (
Disruption Score Scare Evasion Scare

Pathogen Exposure Time (Hrs)

Samples are ranked
by multiple ML features.
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Part 4:
Proteomics

(Future work)

Component 2
o

Proteomics using mass spectrometry can yield many
different protein identifications and quantifications

These proteins can be used as the data points

A model can be trained to look for trends that we as people
are unable to tell are significant using standard differential

expression methods

2
Component 1
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Artic permafrost samples and searching for pathogenic
bacteria

Step 4: Score Pathogenicity

Step 2: Enrich Pathogenic Phenotypes

Appling the
model to real

world data

Step 1: Isolate Microbes Step 3: Challenge Mammalian Cells

45



The experimental samples were compared and scored
against their relative functional distance from a standard
reference strain

Mystery Sample Pathogenicity Pathogenicity

Multiple 96 well plates for triaging billions of bacteria TA2 Response S(t:aur:::;d Score

in thousands of sample conditions - Vector
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Current Results

By tracking distinct cellular features within a single sample, they were able to:

1) Evaluate a sample’s capacity for immune cell evasion, by quantifying bacterial
growth in the presence of immune cells

2) Evaluate a sample’s cytotoxicity, by quantifying the increase in unhealthy
epithelial cells over time

3) Evaluate a sample’s natural capacity to colonize epithelial culture, by
quantifying the natural growth of the bacterial sample.

Approximately 22 of the samples exhibited pathogenic response across multiple
feature dimensions in the presence of a simulated immune response.

47



Sources

https://www.pnnl.gov/news-media/glowing-progress-pathogen-

discovery

OmniScreen team:

Becky Hess, Rob Egbert, Enoch Yeung,
PNNL PNNL UC Santa Barbara

48
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What is multi-omics and why is it important?

What are some methods for extracting insight from muilti-
omics?

What motivates the choice of different methods? I’ll give some
examples that hopefully give some intuition about this.

53
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What is Multi-omics? Samples

Features

= What it sounds like! g

Samples are taken across
multiple different
biomolecule types or
“views”.
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R. Argelaguet et al., “Multi-Omics Factor Analysis—a framework for unsupervised integration of
multi-omics data sets,” Molecular Systems Biology, vol. 14, no. 6, p. e8124, Jun. 2018, doi:
10.15252/msb.20178124.
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https://doi.org/10.15252/msb.20178124

e

What it sounds like! Measures
Clinical
The ‘Views’ or sets of N
features for each sample can Gene| [ g
come from a variety of expression e 2 BEE EEE
sources, including "omics, 2
clinical measures (e.g. blood ©
Met lome|Q
pressure), or even more etabolome
complex data such medical
scans.
Here we'll focus on the ol 8 S ok nd . ater, e
OmICS plece Of the Input_ ggfﬁ%tﬁsézsﬂgiﬁzg{;giyégjgs'Blology,voI.15, no. 3, p. e8497, Mar. 2019,
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https://doi.org/10.15252/msb.20188497

More concretely, we take these features and try to analyze
them “simultaneously”

More complete understanding of the biological system

More powerful predictors for use cases such as cancer
subtype prediction.

57



Problems?

Large numbers of features in an already usually p >>n
problem

Different data types can be hard to combine (e.g. continuous
vs count data)

Missing value problem is exacerbated by completely missing
views

Nature of the relationship between datasets can be difficult to
model

58



Integration

A good high-level partitioning of the ways we categorize
Integration schemes is early, middle, and late integration.

Other categorizations include ‘mixed’, ‘intermediate’ and
‘hierarchical’.

The point of these schemes is to force the algorithm to learn in

a certain way that hopefully reflects actual biological
Interactions.

59



Early

Integration

Early Integration

60



Early

Integration

Concatenate and predict

61



Early

Integration

Imbalance in the data may cause learning algorithms to pay
too much attention to one of the views.

Ignores data-specific distributions of the views.

The missingness of a particular view is problematic.

High dimensionality problem is exacerbated.

62



Middle

Integration

The next reasonable option is to combine "‘omics at some
‘middle’ point.

Distinction between methods is subtle, and it is better to talk
about specific cases rather than a whole class of algorithms.
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Middle

Integration

Plan 1: Separately process each network and then combine
through more statistical learning or heuristics.

This has the advantages of (usually) performing dimensionality
reduction and allowing for the removal of data differences

across views.

64



Middle

Integration

Plan 1. Separately process each network and then combine
through more statistical learning or heuristics.

Some forms of intermediate representation include:
Kernels
Graphs
Neural Network Layers
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Middle

Integration

A Patient data B Patient similarity networks C Integrated network |

Measures &
Clinical - 2
Gene o . R : ;
' -— | I | bl -
expression 5 ENEEEE ENEN q .® '. =
© |dentify and integrate °.%“o o
Metabolome 0— ® predictive features  ‘we ®
O o for each class - .
O 0O Classify new patients
Y O by relative similarity
© High risk patient to known classes

@ Low risk patient
— Similarity

S. Pai, S. Hui, R. Isserlin, M. A. Shah, H. Kaka, and G. D. Bader, “netDx: interpretable patient classification using integrated patient
similarity networks,” Molecular Systems Biology, vol. 15, no. 3, p. e8497, Mar. 2019, doi: 10.15252/msb.20188497.
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Middle

Integration
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Middle

Integration
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Middle

Integration
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Lee, C. & van der Schaar, M. A Variational Information Bottleneck Approach to Multi-Omics Data

Integration. Preprint at https://doi.org/10.48550/arXiv.2102.03014 (2021).
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https://doi.org/10.48550/arXiv.2102.03014

Middle

Integration

« Combines each view through a 'product of
experts'

* Handles the view-missing problem by training in
the presence of missing views.

» Requires view-specific predictors to also perform
well by themselves.
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Middle

Integration

Plan 2: Assume that all views share some common ‘latent
space’. Almost invariably some matrix factorization method.

Advantages are that is does not need prior transformation to
learn the shared representation, however it is more sensitive to
heterogeneity in the data.
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Middle

Integration

Intermediate/Mixed Integration

Plan 2: Assume that all views share some common ‘latent

space’. Almost invariably some matrix factorization method.
Di Xn Di X k

kXn

Q
X
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Middle

Integration

Plan 2: Assume that all views share some common ‘latent
space’. Almost invariably some matrix factorization method.

Answer questions such as
How much variance is explained by each hidden factor?

Which factors drive variation across multiple views? Only
one view?
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Middle

Integration

Plan 2: Assume that all views share some common ‘latent
space’.

Issues?

Sensitive to differences in the views
Assumption of common latent space reasonable?
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Middle

Integration

Plan 2: Assume that all views share some common ‘latent
space’.

Preview: SPLS, look for common sources of variation in two
datasets.

Q
X

Q

Q
X

75



Middle

Integration

Plan 2: Assume that all views share some common ‘latent

space’.

Preview: SPLS, look for common sources of variation in two

datasets.
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Late

Integration

Run each view through its own model and aggregate the
results at the end.
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Run each view through its own model and aggregate the
results at the end.

Can easily utilize existing tools for single-omics and combine
Late results.

Integration

Possibly achieves the best performance on things like
prediction tasks.

Doesn’t learn relationships between the different omics.
Fairly unpalatable from an explainability standpoint.
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Hierarchical

Integration

Modeling hierarchical relationships

Sometimes we might want to model the ‘direction’ of causality.

For example, we might want to specify that genes affect the
outcome through proteins.
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Conclusion

Multi-omics is crucial in understanding complex biological
systems.

There is great diversity in the goals of multi-omics studies, as
well as the methods to attack each problem.

The complexity of relationships between different levels of
the omics hierarchy requires careful modeling considerations
so as to avoid spurious conclusions.
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Overview

My background

C. difficile introduction

Experimental design

Data

Analysis:
MixOmics
Glasso
Mechanistic Model
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= C. difficile is the most common cause of healthcare-acquired
infection in humans

= Antibiotics deplete your healthy gut microbiota & if exposed to C.
difficile you’ll get infected

= Diarrhea, pseudomembranous colitis, and death

= Recurrence in 30% of cases

Introduction

Healthy colon Pseudomembranous colitis
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C. difficile lifecycle

spores

vegetative
cell

vegetative
cells
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Toxin production

Toxins function by damaging the intestinal mucosa and cause
symptoms of C. difficile infection

Toxin production appears to be triggered by nutrient depletion

Few studies have explored the complex environment of the
antibiotic-depleted host gut in vivo

We want to mathematically study what specific mechanisms are
leading to toxin production.
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C. difficile life
cycle in a mouse

model

log,, [reciprocal dilution
toxin/gram luminal content] C. difficile CFU/gram

5 days 2 days
Water with Clean water
antibiotics

<

a109g Alewwng

® ® e (hr) ® ® Metabolomics (n=8 per time point)

® ® @® RNASeq (n=3-4 per time point)
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Experimental

design

Mice were treated with the antibiotic cefoperazone and
challenged with C. difficile VPI 10463 2 days later (O hour)

Mice were euthanized at 0 hour (pre-infection), 12 hour, 24
hour, and 30 houir.

Cecal contents were analyzed via untargeted
metabolomics at 0 hour, 12 hour, 24 hour, and 30 hour with
a sample size of n=8 at each time point.

RNAseq (transcriptomics) of C. difficile was completed
from paired cecal contents at 12 hour, 24 hour, and 30
hour with a sample size of n=3-4 at each time point.

$$8$$



Metabolomics

Metabolites are small molecules that are the intermediate
products of metabolic reactions

Metabolomics provide measurements of every metabolite
in the host metabolome

Cecal samples were processed by Metabolon where
metabolites were identified by automated comparison of
the ion features to a reference library of chemical standard
entries.

Measured 638 unique metabolites on 32 samples

% METABOLON:'



9.7% of the metabolomics matrix entries are missing

Data could be missing because:
Sample preparation error
Below limit of detection
The value is truly 0

Missing data

Previous studies compared multiple methods for filling in
missing data and found K-nearest neighbor algorithm to be the
most robust (Do et al, 2018)

We use the samples at each time point as the nearest
neighbors




Transcriptomics

The set of all RNA molecules in C. difficile
Whole transcriptome shotgun sequencing approach

RNAseq (transcriptomics) of C. difficile was completed at
the University of Michigan DNA Sequenceing Core

Measured 3769 genes across 11 samples

These 11 samples are a subset of the same samples
from the metabolomics data.

12 hour (n=3), 24 hour (n=4), and 30 hour (n=4)






Random Forest

Top 50 metabolites
identified by Random
Forest analysis. The
mean accuracy value
decrease is a measure
of how much predictive
power is lost if a given
metabolite is removed
or permuted in the
Random Forest
algorithm; Metabolite
names are labeled red
if their level increased
throughout infection,
black if they were
variable, and green if
the level decreased

drmeieig hone

Liydrasybulyaie BHBEA

ST T

3-4-Fydrcoayphany lactahs

-brlanay-GP0 14

AT CE T
ikl
srpathcneme
mdatd-GPC 18018
Lk
TG B1MBD
A kul E F-16(
Mi-a

L I

amino acid

* carbohydrate

nuclectide
lipid
xenobiotic
peptide

cofactors and vitamins

I
0.003

|
0.004

| |
0.005 0.006

mean decrease accu racy

|
0.007

I
0.008




Heat maps showing
relative abundances of top
metabolites based on a
random forest analysis
used to classify samples
Into time point categories

Unsupervised hierarchical
clustering was used to
cluster metabolites with
similar abundance profiles
over time

Suggests 5-aminovalerate
has highest predictive
accuracy and increases
throughout infection
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= (A) Venn diagram A 24hrvs.12hr 30 hrvs. 12 hr B.
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Multivariate-based integration of the gut metabolome and C.
difficile transcriptome throughout colonization and infection using
MixOmics
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Sparsity

High dimensional data is difficult because there is a low sample
size and a lot of measurements

We cannot analyze all of the data, and some of it is noisy

Graphical models are useful to understand dependencies within
a data set

Using sparsity allows the use of networks as synthesis tools,
particularly for datasets containing a large number of variables
such as omics datasets.

Penalized methods make networks sparse (fewer entries) so that
only the most important associations in the population are
iIncluded



Sparsity

Graphical models are useful to understand dependencies within
a data set

Using sparsity allows the use of networks as synthesis tools,
particularly for data sets containing a large number of variables
such as omics data sets.

Penalized methods make networks sparse (fewer entries) so
that only the most important associations in the population are
iIncluded




Network structure was estimated from data using the graphical
least absolute selection and shrinkage operator (glasso, Friedman,
Hastie & Tibshirani, 2008)

Covariance
Matrix

(S)

Sparse graphical glasso MIMZE £(8) = —log det(®) + tr(56) + 4/8]|,

models

Sparse Inverse 0. Penalized Partial
Covariance Matrix Pij = Correlation Matrix

(Q) (R)

Partial correlation matrix removes correlations of confounding
variables




Connected Metabolites

Left panel shows a
sparse graph with
A = 0.8.

The right panel
shows a graph of the
total metabolites in a
graph as A is
increased (top) and
the metabolites
connected to toxin as
A is increased 50
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What’s connected

to toxin?

hydroxybutyrate

putrescine

guanosine

equol sulfate

Text

Lipid hydroxyphenyl

Carbohydrate
Xenobiotics
Mucleotide
Amino Acid
Energy
Peptide
Cofactors and Vitamins

Toxin A=0.8

sedoheptulose

5-aminovalerate

acetylleucine

thioproline



Metabolic reactions lead to energy for C. difficile

= The metabolites in our sparse networks are involved in the Stickland reaction

= This reaction is thought to provide energy to C. difficile which will grow and produce toxin
and subsequent infection

= There are numerous different amino acids that could be contributing electrons to the
proline pathway

0O

5
CH
HOJY 3 + 4/_/_&
NH, HyN

Electron donor Proline 5-aminovalerate C. difficile

(leucine)



Stickland reaction model

dE

% = A+(UTE—,BEP—5E,

dP

A B + wTP — BEP — 6P,
: dS

T — = EP — S

» Toxin T 15 ,
e (1 ! ) T(E + P)
dt ks) ¢ ’

—B> Proline —>
* E =leucine, isoleucine, and valine
e P=proline

e S=>5-aminovalerare




We fix
parameters d
and k.

We use median
values from the
data for the

Initial conditions

We fit b, w, A, B
and K

B = Stickland reaction rate
w = Toxin feedback

A = Electron source

B = Proline source

K = Toxin carrying capacity
d = Metabolite clearance

K = Toxin expression/growth

i
i -
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Changes in
proline and

electron donors
decrease toxin
production

T30 h)
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B = Stickland reaction rate
w = Toxin feedback

A = Electron source

B = Proline source

K = Toxin carrying capacity
d = Metabolite clearance
K = Toxin expression/growth
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Sparse graphical models are a suitable to develop a
mechanistic model based on omics data

The Stickland reaction maybe an influential mechanism
driving toxin production

Conclusion

Our model suggests adjusting the inflow of metabolites
used in the Stickland reaction as a primary intervention
strategy
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