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WELCOME!
Summer School will begin at 

8:30 a.m. PDT



Summer School
Day 5: Integration 
Methods and 
Machine Learning

Daniel Claborne & Samantha Erwin
Digital Intelligence; One Health and Biodefense

07.28.2023
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8:30-9:45 a.m. Introduction to Machine Learning for 
Biological Applications

Sam Dixon

9:45-10:15 Machine Learning in Pathogen Discovery Isabelle O’Brien

10:15-10:30 Networking Break

10:30-11:30 The What and Why of Multi-Omics Integration Daniel Claborne

11:30-12:15 Case Study with MixOmics Samantha Erwin



Introduction to 
Machine Learning

Samuel Dixon
Data Scientist
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Machine 
Learning Myths

Equivalently: “Can we 
use AI to understand X?”

Problem

The AI Fairy 
waves a magic 

wand!

Results
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• Scientific or Mission Goal

• Data – you need data to learn

• Quantitative metrics – you 
need to know if you are 
getting closer to success

• Partnership – between data 
scientist and domain 
scientist/subject matter expert

Equivalently: “Can we 
use AI to understand X?”

Problem

The AI Fairy 
waves a magic 

wand!

Results

Requirements 
for Success
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Artificial Intelligence

https://studyopedia.com/data-science/difference-datascience-machinelearing-ai-dl/
Artificial intelligence, machine learning and data science. Retrieved from "Data Science: Concepts and Practice" by Kotu, V., Deshpande, B. (2019). (2 ed.): Morgan Kaufmann. p. 3.

https://studyopedia.com/data-science/difference-datascience-machinelearing-ai-dl/


Artificial Intelligence

“The theory and development of 
computer systems able to perform 
tasks that normally require 
human intelligence, such as 
visual perception, speech 
recognition, decision-making, and 
translation between languages.”

Thinking
humanly

Thinking
rationally

Acting
humanly

Acting
rationally

Optimal 
behavior

Human 
behavior

Observed
outputs

Internal
computations Defining AI



9

Two Historical Classes of AI

Symbolic

Handcrafted knowledge, rule-based 
systems, formal logic, causal models, 

ontologies

Largely driven by human-coded 
representations of prior knowledge

Statistical

Machine learning, probabilistic 
models, inductive inference

Largely driven by observational data
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What is Machine Learning?

ML algorithms build on statistical patterns observed in data

Types of ML Models:

• Linear / Logistic Regression

• Random Forests

• Support Vector Machines

• Bayesian Models

• Neural Networks

Artificial Intelligence

Machine Learning

Deep 
Learning
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What can we do with Machine Learning?

Question
Answering

And More!
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What is Machine Learning? 

A computer program is said to learn from 
experience E with respect to some class of 
tasks T and performance measure P
if its performance at tasks in T, as measured by P, 
improves with experience E.

– Tom Mitchell, Machine Learning, 1997
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Example Problem: Handwriting Recognition

Task (T):   Recognizing and classifying handwritten numbers within images 

Performance measure (P): Percent of numbers correctly classified 

Experience (E): Database of handwritten numbers with given classifications 

Example adapted from Tom Mitchell, Machine Learning, 1997 Data from MNIST database, http://yann.lecun.com/exdb/mnist/



14

How Does Machine Learning Work?

Data / Experience

X = {x1, x2, …, xn} Y

Model

Y=f(x)

Loss Function

ε= 1
𝑁𝑁
∑𝜄𝜄=0𝑛𝑛 𝑔𝑔 𝑓𝑓(𝑥𝑥𝑖𝑖 − 𝑌𝑌𝑖𝑖)

Learning Algorithm

Parameterized Model

𝒇𝒇 𝒙𝒙 = 𝜽𝜽𝟏𝟏𝒙𝒙𝟏𝟏 + 𝜽𝜽𝟐𝟐𝒙𝒙𝟐𝟐 + ⋯

Predictions & Evaluation
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Learning Example : Decision Trees

• Task: Determine if Bill will 
play tennis given weather 
observations

• Performance Metric: 
Prediction accuracy

• Experience: Past 
observations

Day Outlook Temperature Humidity Wind Play Tennis?

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Example from Mitchell, T.M. (1997). Machine Learning.
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Learning Example: Data Preprocessing and Feature 
Engineering
• Many learning algorithms take a set or sequence of vectors as input

• Raw data needs to be encoded in this format

• For many data types, there are existing encoding conventions

• Feature engineering uses domain knowledge to create these encodings
• Highly manual and time consuming

• Quality of learned model often dependent on feature encodings

Example: Play Tennis?

Outlook:  {sunny, overcast, rain}  or 
{sunny, partly cloudy, mostly cloudy, cloudy, drizzle, rain, downpour} or
RGB image from TennisCam

Temperature: {hot, mild, cool} or
{hot, warm, mild, cool, cold} or
{-20F, -19F, … , 114F, 115F} or
continuous
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Learning Example: Decision Trees

General approach:
• Split the data based on 

information theory (entropy)

• Entropy measures the 
distribution of positive and 
negative examples in each block

• Greedy search through attribute 
(feature) space

Entropy
all data

Sum of Entropies
after split-

G=0.247        G=0.029         G=0.152      G=0.048

Gain = 

Outlook

O
ve

rc
as

t

Yes, Yes, 
No, Yes, No

Yes, Yes,
Yes, Yes

No, No, No, 
Yes, Yes

Day Outlook Temperature Humidity Wind Play Tennis?
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Learning Example: Decision Trees

Many design decisions affect 
performance:
• Training data (number and quality of 

examples)

• Which variables describe the data

• Splitting criterion

• Binary versus multivariate splits

• What to do with numeric variables

• Stopping criterion

Outlook

WindHumidity
Yes

Yes No

O
ve

rc
as

t

Yes No

(Day 15) What will happen on a sunny, cool, 
humid, windy day?
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What’s the Question?

• Machine learning models are often just a component of a larger system you 
must clearly define what you want to get out of the ML model itself.

• For a model to be effective it must answer the correct question. 
• Where does it fit in the larger system?

• What task does the model accomplish?

• Other considerations:
• What domain knowledge is relevant?

• What data is available? 
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Who Knows your Problem?

• ML experts know models
• Identify approaches given a task and data

• Process data for models

• Develop and train models

• SMEs know the domain details 
• What the raw data looks like 

• How the physical sensor/system works 

• What the general goals of their field are 

• Mission SMEs know the mission 
• What the real-world goal is 

• What success looks like when applying the whole system
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Types of Machine Learning Problems
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Supervised Learning

• “Supervised Learning is when the 
algorithm gets a copy of the answer 
key.”

• Requires labeled datapoints
• Number of examples depends on task 

and algorithm
• More is always better!

• Supervised models trained on 
representative data

• New inputs/outputs look like old 
inputs/outputs

• No guarantee you can generalize to 
new types of data
or new parts of the input space

Input 
features x

Model

Target y

Output y ̂

Compare
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COVID-19 detection from chest x-rays

• Binary classification: is pneumonia due to Covid-19 or other causes?

• Results:
• 98% accuracy
• 98% sensitivity, 97% specificity

https://link.springer.com/article/10.1007/s42600-020-00120-5 

COVID-19 classification in X-ray chest images using a new convolutional neural network: CNN-COVID (2022)
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AlphaFold

"Highly accurate protein structure prediction with AlphaFold," Nature, 2021. https://www.nature.com/articles/s41586-021-03819-2

Predicts 3D protein structure with transformers
• Inputs: sequences
• Outputs: cartesian coordinates of folded protein
• Transformer applied to embeddings of sequence and 

structure
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Unsupervised Learning
• Inputs -> ???

• What if we don’t have any labels?
• Replace outputs with another goal

• Many different approaches:
• Autoencoders

(Capture regularities through data compression)
• Clustering algorithms

(Group by similarity)
• Semi- & Self-supervised learning

(Create your own labels!)
• Generative Adversarial Networks 

(Create new examples to drive training)

• Useful for many tasks, including anomaly detection
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Autoencoder

• Unsupervised models learning 
latent representations are often 
used as part of supervised 
methods

• With an auto encoders the Goal is 
to reduce the dimensionality of 
the input and recover it

• Dimensionality reduction is at 
heart a data compression strategy

• Neural networks can learn very 
rich representations of data

Original Reconstruction
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Generative Adversarial Networks
• Essential idea: Connect two models with competing objectives

• Generator: Create realistic data
• Discriminator: Distinguish between real and generated data

Generator

Generated Data

Real Data Discriminator

Real?

Generated?
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Reinforcement Learning
• Learns from trial and error

• Reinforcement learning 
is based on rewarding desired 
behaviors and/or punishing 
undesired ones

• Goal is to learn a policy - that 
maximizes the expected 
reward according to a value-
function

https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
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What is Deep Learning?

Artificial Intelligence

Machine Learning

Deep 
Learning

• Specific subset of machine learning 
algorithms

• Made from successive layers 
composed of simpler models. The 
“deep” learning refers to these 
layers of the model

• Achieves state-of-the-art 
performance in many domains



30

ML vs DL: Traditional ML Pipelines

Goh et al. (2017). Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models

https://arxiv.org/ftp/arxiv/papers/1706/1706.06689.pdf
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ML vs DL: End-to-End Learning

Goh et al. (2017). Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models

https://arxiv.org/ftp/arxiv/papers/1706/1706.06689.pdf


Why Deep Learning and Why Now?

• Compute
Deep learning models are significantly more computationally expensive 
compared to their classical ML counterparts. Until recently, computing 
resources could only train very simple models. Modern GPU resources 
have greatly expanded the scale of models that can be trained.

• Data
Bigger models require more data to successfully train. The availability of 
massive and carefully annotated datasets has allowed deep learning to 
show its effectiveness on a wide variety of models.

• Code
Many new tools have been developed that abstract basic algorithms and 
allow more developers and researchers to leverage compute resources to 
train models on massive datasets without needing to worry about low level 
implementation details. 



Questions?
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8:30-9:45 a.m. Introduction to Machine Learning for Biological 
Applications

Sam Dixon

9:45-10:15 Machine Learning in Pathogen Discovery Isabelle O’Brien

10:15-10:30 Networking Break

10:30-11:30 The What and Why of Multi-Omics Integration Daniel Claborne

11:30-12:15 Case Study with MixOmics Samantha Erwin



Machine Learning in 
Pathogen Discovery

Isabelle O’Bryon
Thank you to Becky Hess



OmniScreen:
Friend or Foe?

 Defense Advanced Research Projects 
Agency (DARPA) issued a “Friend or 
Foe challenge:

• Can we isolate pathogens without 
altering the sample of phenotype? (1)

 Unknown bacteria can be introduced to 
human immune cells and an immune 
response can be validated by a 
skilled microbiologist expert 
using microscopy

 The OmniScreen project aims to create 
a machine learning model for 
microscopy images that will automate 
the classification of pathogenic and 
non-pathogenic bacteria

36



 Part 1 is to enrich for the pathogenic phenotype

 Part 2 is to challenge the potentially pathogenic bacteria to 
human cell lines

 Part 3 is to evaluate the if the bacteria was pathogenic to the 
human cells using microscopy

 Part 4 (future work) is to evaluate if the bacteria was 
pathogenic to the human cells using proteomics

37

OmniScreen Project



Part 1:
Pathogen 
Extraction and 
Enrichment

38



Part 2:
Challenge the 
Cell Lines

39

 The isolated bacteria is labeled with a probe and added 
to either the lung or gut cell line

 Gut and lung cell lines were challenged by 45 bacterial 
strains that are known friends and foes



Part 3:
Evaluate
Pathogenicity

40

 Images were taken every 24 hours for several days

 Here, we can see healthy growing cells are seen to adhere 
strongly to the dish, but sickly cells lose structural integrity 
and start to lift away from the dish

 However, because of the amount of time it takes an expert to 
evaluate the pathogenicity a machine model was developed
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 The experiment design was able to have 
ground truth information by introducing known 
pathogen and non-pathogen bacteria

 There were a total of 14,000 images taken for 
training the model

 There is a well-defined question that is being asked
 “Is there an immune response to bacteria?”

 A convolutional neural network (CNN) model was 
used

Why a machine learning model is applicable here

An example image from microscopy (1)
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 CNN is often used for image processing 
models

 It is good at learning pattens and then 
evaluating if those pattens are found

Overview of Convolutional Neural Network (CNN)

https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6

https://towardsdatascience.com/conv-nets-for-dummies-a-bottom-up-approach-c1b754fb14d6
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OmniScreen CNN Model Architecture



Part 4:
Proteomics
(Future work)

 Proteomics using mass spectrometry can yield many 
different protein identifications and quantifications

 These proteins can be used as the data points

 A model can be trained to look for trends that we as people 
are unable to tell are significant using standard differential 
expression methods

44



Appling the 
model to real 
world data

 Artic permafrost samples and searching for pathogenic 
bacteria

45
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 The experimental samples were compared and scored 
against their relative functional distance from a standard 
reference strain 



Current Results

By tracking distinct cellular features within a single sample, they were able to:
 1) Evaluate a sample’s capacity for immune cell evasion, by quantifying bacterial 

growth in the presence of immune cells
 2) Evaluate a sample’s cytotoxicity, by quantifying the increase in unhealthy 

epithelial cells over time
 3) Evaluate a sample’s natural capacity to colonize epithelial culture, by 

quantifying the natural growth of the bacterial sample. 
 Approximately 22 of the samples exhibited pathogenic response across multiple 

feature dimensions in the presence of a simulated immune response. 

47



Sources 

https://www.pnnl.gov/news-media/glowing-progress-pathogen-
discovery
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OmniScreen team:

Becky Hess,
PNNL

Rob Egbert,
PNNL

Enoch Yeung,
UC Santa Barbara

https://www.pnnl.gov/news-media/glowing-progress-pathogen-discovery
https://www.pnnl.gov/news-media/glowing-progress-pathogen-discovery


Questions?
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Networking Break

10:15 – 10:30 a.m.
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8:30-9:45 a.m. Introduction to Machine Learning for Biological 
Applications

Sam Dixon

9:45-10:15 Machine Learning in Pathogen Discovery Isabelle O’Brien

10:15-10:30 Networking Break

10:30-11:30 The What and Why of Multi-Omics Integration Daniel Claborne

11:30-12:15 Case Study with MixOmics Samantha Erwin



The What and Why 
of Multi-Omics

Daniel Claborne
Data Scientist



Intro
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Motivation

What is multi-omics and why is it important?

What are some methods for extracting insight from multi-
omics?

What motivates the choice of different methods?  I’ll give some 
examples that hopefully give some intuition about this.
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What is Multi-omics?

Intro



Intro

 What it sounds like!

Samples are taken across 
multiple different 
biomolecule types or 
“views”.
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What is Multi-omics?

R. Argelaguet et al., “Multi-Omics Factor Analysis—a framework for unsupervised integration of 
multi-omics data sets,” Molecular Systems Biology, vol. 14, no. 6, p. e8124, Jun. 2018, doi: 
10.15252/msb.20178124.

https://doi.org/10.15252/msb.20178124


Intro
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What is Multi-omics?

 What it sounds like!

The ‘Views’ or sets of 
features for each sample can 
come from a variety of 
sources, including `omics, 
clinical measures (e.g. blood 
pressure), or even more 
complex data such medical 
scans.  

Here we’ll focus on the 
`omics piece of the input.

S. Pai, S. Hui, R. Isserlin, M. A. Shah, H. Kaka, and G. D. Bader, “netDx: 
interpretable patient classification using integrated patient similarity 
networks,” Molecular Systems Biology, vol. 15, no. 3, p. e8497, Mar. 2019, 
doi: 10.15252/msb.20188497.

https://doi.org/10.15252/msb.20188497


Intro

 More concretely, we take these features and try to analyze 
them “simultaneously”

 More complete understanding of the biological system

 More powerful predictors for use cases such as cancer 
subtype prediction.
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What is Multi-omics?



Intro

Problems?

 Large numbers of features in an already usually p >> n 
problem

 Different data types can be hard to combine (e.g. continuous 
vs count data)

 Missing value problem is exacerbated by completely missing 
views

 Nature of the relationship between datasets can be difficult to 
model

58

What is Multi-omics?



Integration

A good high-level partitioning of the ways we categorize 
integration schemes is early, middle, and late integration.

Other categorizations include ‘mixed’, ‘intermediate’ and 
‘hierarchical’.

The point of these schemes is to force the algorithm to learn in 
a certain way that hopefully reflects actual biological 
interactions.
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How can we combine the different views?



Early
Integration

60

Early Integration



Early
Integration
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Concatenate and predict



Early
Integration
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Problems?

 Imbalance in the data may cause learning algorithms to pay 
too much attention to one of the views.

 Ignores data-specific distributions of the views.

 The missingness of a particular view is problematic.

 High dimensionality problem is exacerbated.



Middle
Integration
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Intermediate/Mixed Integration (Middle Integration)

The next reasonable option is to combine `omics at some 
‘middle’ point.

Distinction between methods is subtle, and it is better to talk 
about specific cases rather than a whole class of algorithms.



Middle
Integration

64

Intermediate – Separate Networks

Plan 1:  Separately process each network and then combine 
through more statistical learning or heuristics.

This has the advantages of (usually) performing dimensionality 
reduction and allowing for the removal of data differences 
across views.



Middle
Integration
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Intermediate representation methods

Plan 1:  Separately process each network and then combine 
through more statistical learning or heuristics.

Some forms of intermediate representation include:

 Kernels

 Graphs

 Neural Network Layers



Middle
Integration

66

A graph intermediate representation.

S. Pai, S. Hui, R. Isserlin, M. A. Shah, H. Kaka, and G. D. Bader, “netDx: interpretable patient classification using integrated patient 
similarity networks,” Molecular Systems Biology, vol. 15, no. 3, p. e8497, Mar. 2019, doi: 10.15252/msb.20188497.

https://doi.org/10.15252/msb.20188497


Middle
Integration

67

Example of modeling considerations



Middle
Integration
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Example of modeling considerations



Middle 
Integration

69

A Deep-Learning Based Intermediate Representation

Lee, C. & van der Schaar, M. A Variational Information Bottleneck Approach to Multi-Omics Data 
Integration. Preprint at https://doi.org/10.48550/arXiv.2102.03014 (2021).

https://doi.org/10.48550/arXiv.2102.03014


Middle 
Integration
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A Deep-Learning Based Intermediate Representation

• Combines each view through a 'product of 
experts'

• Handles the view-missing problem by training in 
the presence of missing views.

• Requires view-specific predictors to also perform 
well by themselves.



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’.  Almost invariably some matrix factorization method.

Advantages are that is does not need prior transformation to 
learn the shared representation, however it is more sensitive to 
heterogeneity in the data.



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’.  Almost invariably some matrix factorization method.

≈ ×

𝑝𝑝𝑖𝑖 × 𝑛𝑛 𝑝𝑝𝑖𝑖 × 𝑘𝑘

𝑘𝑘 × 𝑛𝑛



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’.  Almost invariably some matrix factorization method.

Answer questions such as 

- How much variance is explained by each hidden factor?

- Which factors drive variation across multiple views?  Only 
one view?



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’.

Issues? 

- Sensitive to differences in the views

- Assumption of common latent space reasonable?



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’. 

Preview:  SPLS, look for common sources of variation in two 
datasets.

≈

×≈

×

≈



Middle
Integration
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Intermediate/Mixed Integration

Plan 2:  Assume that all views share some common ‘latent 
space’. 

Preview:  SPLS, look for common sources of variation in two 
datasets.



Late
Integration

Run each view through its own model and aggregate the 
results at the end.

77

Late integration



Late
Integration

Run each view through its own model and aggregate the 
results at the end.

 Can easily utilize existing tools for single-omics and combine 
results.

 Possibly achieves the best performance on things like 
prediction tasks.

 Doesn’t learn relationships between the different omics.

 Fairly unpalatable from an explainability standpoint.
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Late integration pros and cons



Hierarchical
Integration

Sometimes we might want to model the ‘direction’ of causality.

For example, we might want to specify that genes affect the 
outcome through proteins.  

79

Modeling hierarchical relationships



Conclusion

 Multi-omics is crucial in understanding complex biological 
systems.

 There is great diversity in the goals of multi-omics studies, as 
well as the methods to attack each problem.

 The complexity of relationships between different levels of 
the omics hierarchy requires careful modeling considerations 
so as to avoid spurious conclusions.
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Questions?
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8:30-9:45 a.m. Introduction to Machine Learning for Biological 
Applications

Sam Dixon

9:45-10:15 Machine Learning in Pathogen Discovery Isabelle O’Brien

10:15-10:30 Networking Break

10:30-11:30 The What and Why of Multi-Omics Integration Daniel Claborne

11:30-12:15 Case Study with MixOmics Samantha Erwin



MixOmics Case 
Study

Samantha Erwin
Data Scientist



Overview

84

• My background

• C. difficile introduction

• Experimental design

• Data

• Analysis:
• MixOmics
• Glasso
• Mechanistic Model



My Background
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 Undergraduate: 
• B.S. Mathematics, Murray State University
• Undergraduate research

 Graduate:
• M.S./Ph.D. Mathematics, Virginia Tech
• Applied math focus
• CompBio Summer School
• Summer Intern at Los Alamos National Lab and

 Postdoc: 
• Population Health, NC State Vet School
• Computational modeling group

 Computational Scientist at ORNL: 2019-2022

 Data Scientist and Team Lead at PNNL: 2022 - Current
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Josh Fletcher Cristina Lanzas Casey Theriot



Introduction

 C. difficile is the most common cause of healthcare-acquired 
infection in humans

 Antibiotics deplete your healthy gut microbiota & if exposed to C. 
difficile you’ll get infected
 Diarrhea, pseudomembranous colitis, and death
 Recurrence in 30% of cases 
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Pseudomembranous colitisHealthy colon



C. difficile lifecycle
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toxin

vegetative 
cell

vegetative 
cells

spores



 Toxins function by damaging the intestinal mucosa and cause 
symptoms of C. difficile infection

 Toxin production appears to be triggered by nutrient depletion

 Few studies have explored the complex environment of the 
antibiotic-depleted host gut in vivo

 We want to mathematically study what specific mechanisms are 
leading to toxin production.

90

Toxin production
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C. difficile life 
cycle in a mouse 
model

5 days 2 days
Water with 
antibiotics

Clean water



Experimental 
design

 Mice were treated with the antibiotic cefoperazone and 
challenged with C. difficile VPI 10463 2 days later (0 hour)

 Mice were euthanized at 0 hour (pre-infection), 12 hour, 24 
hour, and 30 hour.

 Cecal contents were analyzed via untargeted 
metabolomics at 0 hour, 12 hour, 24 hour, and 30 hour with 
a sample size of n=8 at each time point.

 RNAseq (transcriptomics) of C. difficile was completed 
from paired cecal contents at 12 hour, 24 hour, and 30 
hour with a sample size of n=3-4 at each time point.

 $$$$$ 



Metabolomics

• Metabolites are small molecules that are the intermediate 
products of metabolic reactions

• Metabolomics provide measurements of every metabolite 
in the host metabolome

• Cecal samples were processed by Metabolon where 
metabolites were identified by automated comparison of 
the ion features to a reference library of chemical standard 
entries.

• Measured 638 unique metabolites on 32 samples



Missing data

 9.7% of the metabolomics matrix entries are missing

 Data could be missing because:
 Sample preparation error
 Below limit of detection
 The value is truly 0

 Previous studies compared multiple methods for filling in 
missing data and found K–nearest neighbor algorithm to be the 
most robust (Do et al, 2018)

 We use the samples at each time point as the nearest 
neighbors



Transcriptomics

 The set of all RNA molecules in C. difficile

 Whole transcriptome shotgun sequencing approach

 RNAseq (transcriptomics) of C. difficile was completed at 
the University of Michigan DNA Sequenceing Core

 Measured 3769 genes across 11 samples 
 These 11 samples are a subset of the same samples 

from the metabolomics data.
 12 hour (n=3), 24 hour (n=4), and 30 hour (n=4)



Results Current data techniques with metabolomics
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Random Forest
Top 50 metabolites 
identified by Random 
Forest analysis. The 
mean accuracy value 
decrease is a measure 
of how much predictive 
power is lost if a given 
metabolite is removed 
or permuted in the 
Random Forest 
algorithm; Metabolite 
names are labeled red 
if their level increased 
throughout infection, 
black if they were 
variable, and green if 
the level decreased
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Heat map
 Heat maps showing 

relative abundances of top 
metabolites based on a 
random forest analysis 
used to classify samples 
into time point categories

 Unsupervised hierarchical 
clustering was used to 
cluster metabolites with 
similar abundance profiles 
over time

 Suggests 5-aminovalerate 
has highest predictive 
accuracy and increases 
throughout infection



Results Current data techniques with transcriptomics
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 (A) Venn diagram 
showing the 
differentially 
expressed genes 
that were shared or 
unique between 
the three time 
points. 

 (B to D) Volcano 
plots highlighting 
genes whose 
transcript levels 
changed by 
greater than 2-fold 
 Red genes had 

increased 
transcript 
levels, green 
had decreased 
levels.



Results
Multivariate-based integration of the gut metabolome and C. 
difficile transcriptome throughout colonization and infection using 
MixOmics
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 Multivariate-based analysis of 
the gut metabolome and 
C. difficile transcriptome 
during colonization and 
infection. 

 The top row indicates the 
features in the first component 
for the metabolites (left) and 
transcripts (right). 

 The bottom row indicates the 
features in the second 
component for the metabolites 
(left) and transcripts (right). 

 The color indicates the 
expression levels of each 
variable according to each 
class where blue represents 
12 h, orange represents 24 h, 
and gray represents 30 h.
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 Correlations between the 
metabolome and C. difficile 
transcriptome. 

 A Circos plot displays the 
positive and negative 
correlations between the 
selected features with blue 
and red lines, respectively

 The metabolites are 
indicated in purple (top right 
quadrant), and the 
transcripts are indicated in 
green. 

 The outer lines indicate the 
expression levels of each 
variable according to each 
class where blue represents 
12 h, orange represents 
24 h, and gray represents 
30 h. 



Sparsity

 High dimensional data is difficult because there is a low sample
size and a lot of measurements

 We cannot analyze all of the data, and some of it is noisy

 Graphical models are useful to understand dependencies within
a data set

 Using sparsity allows the use of networks as synthesis tools,
particularly for datasets containing a large number of variables
such as omics datasets.

 Penalized methods make networks sparse (fewer entries) so that
only the most important associations in the population are
included



Sparsity

 Graphical models are useful to understand dependencies within 
a data set

 Using sparsity allows the use of networks as synthesis tools, 
particularly for data sets containing a large number of variables 
such as omics data sets.

 Penalized methods make networks sparse (fewer entries) so 
that only the most important associations in the population are 
included



Sparse graphical 
models

 Network structure was estimated from data using the graphical 
least absolute selection and shrinkage operator (glasso, Friedman, 
Hastie & Tibshirani, 2008) 

Covariance 
Matrix

Penalized Partial 
Correlation Matrix

Sparse Inverse 
Covariance Matrix

glasso

𝜌𝜌𝑖𝑖𝑖𝑖 =
−𝜃𝜃𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖𝜃𝜃𝑖𝑖𝑖𝑖

(Q)

(S)

(R)

𝑓𝑓 Θ ≔ − log det Θ + 𝑡𝑡𝑡𝑡 𝑆𝑆Θ + 𝜆𝜆||Θ||1minimize
Q ➢ 0 

 Partial correlation matrix removes correlations of confounding 
variables 



Discussion

 Left panel shows a 
sparse graph with 
λ = 0.8. 

 The right panel 
shows a graph of the 
total metabolites in a 
graph as λ is 
increased (top) and 
the metabolites 
connected to toxin as 
λ is increased 
(bottom)



What’s connected 
to toxin?



 The metabolites in our sparse networks are involved in the Stickland reaction

 This reaction is thought to provide energy to C. difficile which will grow and produce toxin 
and subsequent infection

 There are numerous different amino acids that could be contributing electrons to the 
proline pathway

+
Energy

ProlineElectron donor 5-aminovalerate

(leucine)

C. difficile

Metabolic reactions lead to energy for C. difficile



• E = leucine, isoleucine, and valine
• P = proline
• S = 5-aminovalerare

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 = 𝐴𝐴 + 𝜔𝜔𝜔𝜔𝑑𝑑 − 𝛽𝛽𝑑𝑑𝛽𝛽 − 𝛿𝛿𝑑𝑑,

𝑑𝑑𝛽𝛽
𝑑𝑑𝑡𝑡

= 𝐵𝐵 + 𝜔𝜔𝜔𝜔𝛽𝛽 − 𝛽𝛽𝑑𝑑𝛽𝛽 − 𝛿𝛿𝛽𝛽,

𝑑𝑑𝑆𝑆
𝑑𝑑𝑡𝑡 = 𝛽𝛽𝑑𝑑𝛽𝛽 − 𝛿𝛿𝑆𝑆,

𝑑𝑑𝜔𝜔
𝑑𝑑𝑡𝑡 = 𝜅𝜅𝜔𝜔 1 −

𝜔𝜔
𝐾𝐾𝑆𝑆 − 𝜔𝜔𝜔𝜔 𝑑𝑑 + 𝛽𝛽 ,

Stickland reaction model
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• We fix 
parameters d 
and k. 

• We use median 
values from the 
data for the 
initial conditions

• We fit b, w, A, B 
and K

β = Stickland reaction rate
⍵ = Toxin feedback
A = Electron source
B = Proline source
K = Toxin carrying capacity
d = Metabolite clearance
κ = Toxin expression/growth



Stickland reaction 
and toxin 
production
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Changes in 
proline and 
electron donors 
decrease toxin 
production
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β = Stickland reaction rate
⍵ = Toxin feedback
A = Electron source
B = Proline source

K = Toxin carrying capacity
d = Metabolite clearance
κ = Toxin expression/growth



Conclusion

 Sparse graphical models are a suitable to develop a 
mechanistic model based on omics data 

 The Stickland reaction maybe an influential mechanism 
driving toxin production

 Our model suggests adjusting the inflow of metabolites 
used in the Stickland reaction as a primary intervention 
strategy



Questions?
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Afternoon Session

1:30-2:30 p.m. Basic Machine Learning Workflow Samantha Erwin

2:30-2:40 Networking Break

2:40-4:00 ‘Omics Integration with SPLS Daniel Claborne

4:00-4:05 Closing Remarks Lisa Bramer
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