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Specific Aims: The subsurface (soils and sediments) hosts the largest dynamic store of organic carbon that 
can be released to the atmosphere upon mineralization. Ca has the potential to play a key role in preventing 
mineralization of this organic carbon by enhancing organic sorption to mineral phases (termed mineral 
protection), as it has long been recognized that Ca forms cation bridges that link together negatively charged 
functional groups from organics and mineral surfaces. A recent meta-study [1] found that exchangeable Ca 
was a good predictor of organic matter (OM) content for certain soils. Moreover, Ca bridging has been 
linked to decreased OM mineralization [2]. However, there is little experimental insight into the molecular-
scale mechanisms and under what conditions Ca bridging occurs. This is in part due to the complexity of 
OM, which is a macromolecular assembly containing numerous functional groups capable of binding 
metals. Molecular insight into Ca-OM binding is essential to provide predictive knowledge on the 
conditions under which Ca stabilizes organic matter within soils and sediments. 

In this work, we propose to shed light on Ca binding to OM, and thus the role that it plays in 
OM sequestration by utilizing recently developed machine learning (ML) tools combined with X-ray 
spectroscopies. Specifically, we will use this approach to identify sensitive spectral fingerprints that can be 
used to distinguish which OM functional groups participate in Ca bridging. The structural and electronic 
structure information gained will be used to develop a comprehensive chemical and structural classification 
of Ca-organic complexation, which will provide insight into Ca-OM binding. We believe that this state-
of-the-art approach can be used to aid the elucidation of the following hypotheses: a) Ca forms inner-
sphere complexes with OM functional groups; and b) Ca is bound predominantly by carboxylate and 
catechol functional groups. We will utilize computational and experimental capabilities at EMSL and 
SSRL to achieve this goal.  

Mission Relevance: This work is aligned with the BER and EMSL mission to develop a mechanistic 
understanding of molecular scale processes controlling ecosystem function, namely, Ca-organic matter 
interactions and their ability to stabilize subsurface carbon pools, thereby mitigating soil carbon efflux. This 
work is in line with the overarching EMSL mission area on Environmental Transformations and 
Interactions. 

Background: X-ray spectroscopy, an important chemical speciation technique, has seen impressive recent 
developments using ML [3,4]. Briefly, X-ray absorption spectroscopy (XAS) encompasses both X-ray 
absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) and 
involves interrogating the unoccupied electronic states by an excited electron from a core level and 
scattering of the photoelectron from nearby neighboring atoms, respectively. On the other hand, X-ray 
emission spectroscopy (XES) interrogates the occupied electronic density of states via a de-excited electron 
back to a core level. Both XAS and XES are manifestly element-specific, as either the excitation or the de-
excitation energy, respectively, selects the species of interest. By combining these spectroscopies one can 
gain a fundamental understanding of the local electronic and atomic structure, elucidating properties of the 
selected species such as oxidation state, bond lengths, ligand identity, and coordination symmetry and 
numbers. The development of reliable experimental techniques at DOE funded X-ray facilities has 



facilitated the accessibility to high-quality XAS and XES measurements. In addition, theoretical advances 
in electronic structure theories, that can reliably predict XAS and XES spectra, have also been developed 
over the last few years. XANES and XES have been recently combined – specifically valence-to-core 
(VtC) XES – with ML [5] to chemically classify a very wide range of molecular sulfur compounds based 
on their rich bonding environments. An open access ML toolkit [6] has been developed and run on top of 
standard open access packages (scikit-learn [7], Keras [8], Tensorflow [9]) that implement various ML 
classifications on spectra.  

Work Plan: We propose to address the Ca-organic matter complexation problem by computing Ca K-edge 
XANES spectra with time-dependent density functional theory (TDDFT) and combine the 
calculated spectra with recently developed ML tools, which we will adapt as needed, to identify sensitive 
spectral fingerprints that can be used to distinguish different Ca-organic complexes from one 
another, which ultimately enables us to ascertain the organic matter functional groups participate in 
Ca bridging. The Tahoma computing cluster at EMSL is an ideal platform for our overall workflow. 
Our approach is as follows: 

1. Structural Data and Curation: The structural data set will include structures (as crystallographic 
information files) obtained from the Cambridge Structural Database [10], which is a repository 
for metal-organic crystal structures. We will compile structures containing Ca-O and Ca-N bonds 
(since we expect Ca to bind to either O or N atoms in OM), of which there are ~ 2000 in the 
database. OM is a mixture of biomolecules (derived from litter, root excretion, and microbial 
biomass) and their degradation products. As such, it contains amino acids, peptides and some 
polysaccharides that contain N; as well as carboxylic acids, polysaccharides, and phenolic 
compounds (lignin, tannin) that exhibit different O functionalities. The structures obtained from 
the Cambridge Structural Database may not fall into a specific class of biomolecule; however, we 
will curate a list of structures to include appropriate functional groups and to exclude non-
representative structures, for instance, those that contain another metal center (including more than 
one Ca center), crown ethers, nitrates, and nitriles. We will initially select structures with fewer 
than 100 atoms. This curated list will exhibit Ca with
different coordination numbers and will include Ca bound
to the major functional groups present in OM, including
carboxylates, catechols, phenols, and amines. We will
include structures in which Ca is chelated and in which Ca
is bound in a monodentate fashion. The Cambridge
Structural Database is the definitive database for molecular
structures; however, we can augment a curated list with
mineral structures, as needed, from several other databases
(e.g. the Inorganic Crystal Structure Database).

2. Spectral Data and Generation: Ca K-edge XANES
spectra can exhibit three pre-edge features (A, B, and
C) (Figure 1). The lowest energy pre-edge feature (A)
is associated with 1s  4s, 4p transitions, however
some 3d mixing occurs. Previous studies [11] have
observed that the intensity of this feature increases in
going from 6-coordinate (Oh/D4h) to 8-coordinate (D2d) to
7-coordinate (C2v/C3v) Ca complexes, which was attributed
to an increase of O 2p orbital mixing with the Ca d orbitals
with decreasing symmetry. The B feature is due to 1s  
4s, 4p transitions. As we can see in Figure 1, there is a large 
degree of variation in the intensity of this feature among Ca complexes and Ca minerals, which can 

Figure 1: Experimental Ca K-edge 
XANES spectra for representative 
reference compounds. The major 
XANES pre-edge features, A, B and 
C are shown. 



be used as a fingerprint to differentiate between different Ca coordination environments. Finally, 
the C arises from a 1s  4p transition. This suggests that XANES spectroscopy provides insight 
into the local symmetry of the Ca-organic complex.  

In this proposal, in addition to XANES spectra, we will also generate XES spectral data. We will 
generate the XANES/XES spectra data for all structures in a curated list using electronic structure 

theory methods – density functional theory (DFT) and time-dependent density functional 
theory (TDDFT) – with the open-source NWChem computational chemistry program [12], 

which is developed and maintained at PNNL 
(https://nwchemgit.github.io/). The curated 
Ca complexes will first be geometry 
optimized at the DFT level of the theory. 
Ground state optimizations will be 
performed with the B3LYP exchange-
correlation functional and suitable all-
electron basis sets (6-311G**). This will be 
followed by TDDFT-based XANES and 
XES computations of the spectra at the Ca 
K-edge. For these X-ray spectroscopy

calculations, the Sapporo-TZP-2012 all-electron basis set will be used to represent the Ca center, 
and the 6-311G** basis set for the remaining atoms. The BHLYP exchange-correlation functional 
will be used for all TDDFT-XANES/XES calculations. We have successfully used this approach 
to simulate the Ca K-edge XANES in previous studies [13]. The solvent environment, if needed, 
will be treated with the implicit solvation model. We will also consider explicit solvation if 
required. The electronic structure methodologies [14,15] in NWChem that we will utilize have been 
successfully validated and published over a variety of systems.  NWChem is available and performs 
efficiently on the Tahoma cluster at EMSL. A Python-based pipeline [16] has been developed for 
data generation (Figure 2) that will be adapted, as needed, for the Tahoma cluster. We will 
augment the computed (synthetic) XANES/XES spectral data with available experimental data 
from SSRL and other sources.  

3. Dimensionality Reduction for XANES/XES: We have recently discussed
dimensionality reduction approaches in the context of X-ray spectroscopies [5]. For completeness, 
we give a brief overview of the dimensionality reduction approaches we will use. Dimensionality 
reduction not only helps determine which features in data are most “evident” or variational, but by 
doing so in a data-driven matter, it also removes potential biases. Lower dimensional 
representations often yield better classification by addressing the “curse of dimensionality” 
problem, i.e., everything in a high dimensional space looks far away, so it may be difficult to 
quantify similarity of points in a high dimensional space [17]. However, selecting the best 
dimensionality reductional algorithm is closely dependent on both the constraints inherent to the 
method and the underlying variance of the training data.

In this proposal, we will use various methods for dimensionality reduction on spectral data to 
extract spectral similarities and thus determine limits on chemical classes by using these ML-based 
inferences of structural parameters.  Following this recent manuscript [5] , we will investigate three 
different dimensionality reduction routines: (1) Principal Component Analysis (PCA) [18], which 
is a fully linear method with an underlying Euclidean metric, (2) a Variational AutoEncoder (VAE)
[19], which is a deeply nonlinear method that still has a local metric, and (3) t-distributed Stochastic 
Neighbor Embedding (t-SNE) [20], a nonlinear embedding that is inherently non-metric. We will 
explore the utility of these unsupervised machine learning methods to not only analyze the 
information retained by a reduced-dimensional representation, but most importantly, to identify

Figure 2: Data generation pipeline schematic 
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classification schemes that are clearly encoded within the spectra. Moreover, both PCA and VAE 
have the additive benefit of generating a mapping to the reduced-dimensional space which can 
subsequently be used to map new data onto the derived lower dimensional spaces. This will 
facilitate applying supervised machine learning to the reduced spaces and thus allow us to quantify 
the quality of the mapping by calculating the accuracy of supervised classification on a subsequent 
test set. Furthermore, by progressively decreasing the constraining assumptions of the unsupervised 
machine learning algorithm, moving from PCA to a VAE to t-SNE, we will not be constrained by 
the chosen algorithm and thus fully investigate the sensitivity to refined chemical information 
contained within XANES and XES. For a schematic overview of a VAE architecture, see Figure 3. 

4. Neural Network (NN) for Structural Inferences in Ca-Organic Matter Complexation
The ability to draw inferences from XANES/XES spectra to structural details is the central
problem in advanced X-ray spectroscopies.  We would like to ask the following
questions. Can we train NNs to identify

 

sensitive spectral fingerprints from the 
various Ca coordination environments? Do 
the NNs correctly evaluate the qualitative 
labels of classification and the quantitative 
labels of, e.g., bond lengths?

We will apply supervised ML to both the 
spectra and the dimensionally reduced 
spaces using the classification schemes and 
regression properties (such as bond length) 
that were identified via an analysis of the 
reduced spaces. Thus, we will be predicting 
structurally relevant information that is 
manifestly embedded in the Ca 
XANES/XES spectral data. Each prediction 
or classification task will have its own ML 
model, which will be chosen based on the input dimension. For example, classification (such as 
ligand identity) on the dimensionally reduced spaces will be implemented via K-Nearest Neighbors 
(KNN) [21]. KNN is both a classification and regression algorithm that categorizes data points 
based on the other data points in the vicinity, specified by the number of neighbors (k) 
hyperparameter. However, predictions on the spectra themselves will be implemented via neural 
networks as neural networks can not only capture the inherent nonlinearities of spectral features, 
but they also avoid the “curse of dimensionality” that arises when applying KNN on high-
dimensional data. Moreover, neural networks can be used for both classification tasks, such as 
bonding environment identification, and regression tasks, such as bond length predictions. By 
combining these supervised ML models on the properties identified by the dimensionality reduction 
routines, we will have an unbiased quantitative evaluation of the sensitivity of both XANES and 
XES to chemically relevant properties. 

Figure 3: Schematic of the variational autoencoder 
neural network that will be used to generate reduced 
dimensional representation of XANES/XES spectra. 



Computational Approach. 

DFT & TDDFT-XANES Calculations:  All DFT and TDDFT-XANES calculations will be performed 
with the open-source NWChem computational chemistry program developed and maintained at PNNL 
(https://nwchemgit.github.io/) and installed on the Tahoma computing cluster. We will employ 
DFT calculations to geometry optimize structures for Ca bound to ligands in the curated structures list. 
Ground state optimizations will be performed with the B3LYP exchange-correlation functional and 
suitable all-electron basis sets (6-311G**). With the optimized clusters in hand, TDDFT-XANES 
calculations will be performed at the Ca K-edge using the restricted excitation window TDDFT 
approach as implemented in NWChem. For the molecular complexes, the Sapporo-TZP-2012 all-
electron basis set will be used to represent the absorbing Ca center, and the 6-311G** basis set for the 
remaining atoms. For the crystalline systems, the Sapporo-TZP-2012 all-electron basis set will be used 
for the central Ca absorbing center, whereas the remaining Ca centers will be represented with the 
Stuttgart RLC ECPs (relativistic large-core effective core potentials), and the remaining atoms will be 
represented with the 6-311G** basis set. The BHLYP exchange-correlation functional will be used for 
all TDDFT-XANES calculations. These ground and excited state simulations comprise ~20-100 
atoms across all the systems (~2000) that will be considered. We will utilize between 2-4 nodes 
for these calculations for a maximum of 48 hours. We estimate we will need ~35,000 node hours for  
DFT and TDDFT-XANES calculations. 

Dimensionality Reduction and Neural Network Models: All machine learning models and statistical 
analysis will be implemented in python using the scikit-learn [7], Keras [8], and Tensorflow [9] packages. 
During training, deep neural networks implemented in Keras/Tensorflow can easily run on a single GPU 
to speed up computational time, or they can be implemented using distributed training such that the 
networks utilize parallelization on multiple GPUs, also increasing computational efficiency. This 
attribute will be particularly beneficial as we expect to train multiple neural networks – one for each of the 
various properties identified through dimensionality reduction routines. All other machine learning 
routines – such as PCA, t-SNE, and KNN – will be implemented using scikit-learn, which has no GPU 
support. We will utilize 1 node for these calculations (utilizing both CPU and GPGPUs) (10 jobs) for a 
maximum of 48 hours. We estimate we will need ~1,000 node hours 

https://nwchemgit.github.io/


Computing Resources 

IMPORTANT: The EMSL computing systems available to users are not approved for use with sensitive 
data. The processing, storage, or transmittal of sensitive data (e.g. Personally Identifiable Information, 
Official Use Only, etc.) is thus prohibited on Tahoma, Cascade and Aurora. Due diligence must be used to 
prevent inadvertent disclosure of invention, patent, or other sensitive information. It is your 
responsibility to protect access to the information.   

☒ By checking this box, I am confirming that participants on this proposal will NOT process,
store, or transmit sensitive data (e.g. Personally Identifiable Information, Official Use Only, etc.) on
Tahoma, Cascade or Aurora.

Total CPU Hours Request for first year of proposal:  35,000 node hours 

Total GPGPU Hours Request for first year of proposal:  1,000 node hours 

Total Data Archive Request for first year of proposal: 

Software 
Details 

Node Request 
(CPUs or 
GPGPUs) 

Estimated 
# of jobs 

Estimated 
Node 
Hours 

Expertise of 
your 

investigators 
for these 
requests 

EMSL Support 
Requested 

Specific Needs 
(e.g., compiling code, 
libraries needed, help 

running jobs, etc.) 
NWChem 

2-4 nodes 2000 35,000 Expert User 
Compiling code, 
libraries, model 
building 

Machine 
Learning 
Python Tools 

1 node 
(CPU/GPGPUs) 

10 1,000 Expert User Installing libraries 

Notes: 

Tahoma allocations are awarded in units of wall-clock time expressed in node-hours. Tahoma's 160 CPU nodes each have 36 
(3.1 GHz) Intel Xeon processor cores with 384 GB of memory and 2 TB of flash storage. Consequently, 10,000 Tahoma CPU 
node-hours are equal to 360,000 processor core-hours. Tahoma's 24 GPGPU nodes each have 36 processor cores and 2 Nvidia 
v100 GPGPUs, 1536 GB of memory, and 7 TB of flash storage. Tahoma's 10 PB global file system is capable of 100 Gigabyte/sec 
bandwidth. Tahoma can deliver a total of 1,500,000 node-hours per year. 

Upon successful review and approval of a proposal, computing resources will be allocated for analysis and archiving of 
experimental data generated at EMSL. 
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