Trevor Moser
Chemist
Dr. Trevor Moser is a chemist with the Structural Biology team. He uses transmission electron microscopy to study biological structures at the nanoscale. His research uses cryo-electron microscopy to study how the structure of a protein or biomolecule imparts a specific function. He employs cryo-electron tomography of whole cells or thinned sections to study how the spatial distribution and organization of protein populations give rise to changes in cellular states and changes in response to environmental stimulus.
Moser is interested in understanding radiation chemistry of liquid samples and the impact of electron damage on the function of biomolecules. He is also interested in technique development and leverages microfabrication and engineering design for creating instruments that provide novel solutions for experimental problems.
Research Interests
- Liquid cell electron microscopy
- Cryo-transmission electron microscopy
- Protein structure and dynamics
Education
- PhD in Biochemistry and Molecular Biology, Michigan Technological University, 2018
- BS in Biochemistry and Molecular Biology, Michigan Technological University, 2012
Publications
2020
Woehl T.J., T.H. Moser, J.E. Evans, and F.M. Ross. 2020. "Electron-beam-driven chemical processes during liquid phase transmission electron microscopy." MRS Bulletin 45, no. 9:746-753. PNNL-SA-153903. doi:10.1557/mrs.2020.227
2019
Moser, T. H., T. Shokuhfar, and J. E. Evans. 2019. “Considerations for Imaging Thick, Low Contrast, and Beam Sensitive Samples with Liquid Cell Transmission Electron Microscopy.” Micron 117: 8-15. doi.org/10.1016/j.micron.2018.10.007.
2018
Moser T.H., H.S. Mehta, C. Park, R.T. Kelly, T. Shokuhfar, and J.E. Evans. 2018. "The role of electron irradiation history in liquid cell transmission electron microscopy." Science Advances 4, no. 4:eaaq1202. PNNL-SA-120688. doi:10.1126/sciadv.aaq1202
Novikova, I. V., N. Sharma, T. Moser, R. Sontag, Y. Liu, M. J. Collazo, D. Cascio, T. Shokuhfar, H. Hellmann, M. Knoblauch, and J. E. Evans. 2018. “Protein Structural Biology Using Cell-Free Platform from Wheat Germ.” Advanced Structural and Chemical Imaging 4 (1). doi.org/10.1186/s40679-018-0062-9.
2017
Abellan P., T.H. Moser, I.T. Lucas, J.W. Grate, J.E. Evans, and N.D. Browning. 2017. "The Formation of Cerium (III) Hydroxide Nanoparticles by a Radiation Mediated Increase in Local pH." RSC Advances 7, no. 7:3831-3837. PNNL-SA-118826. doi:10.1039/c6ra27066b
Kruska, K., A. Rohatgi, R. S. Vemuri, L. Kovarik, T. H. Moser, J. E. Evans, and N. D. Browning. 2017. “Grain Growth in Nanocrystalline Mg-Al Thin Films.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 48 (12): 6118-6125. doi.org/10.1007/s11661-017-4350-0.
2016
Johnson G.E., T.H. Moser, M.H. Engelhard, N.D. Browning, and J. Laskin. 2016. "Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing." Journal of Chemical Physics 145, no. 17:Article No. 174701. PNNL-SA-122098. doi:10.1063/1.4966199
Patterson J.P., D.B. Collins, J.M. Michaud, J.L. Axson, C.M. Sultana, T.H. Moser, and A.C. Dommer, et al. 2016. "Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy." ACS Central Science 2, no. 1:40-47. PNNL-SA-113364. doi:10.1021/acscentsci.5b00344.
Sripathi, S. R., O. D. Sylvester, W. He, T. Moser, J. Y. Um, F. Lamoke, W. Ramakrishna, P. S. Bernstein, M. Bartoli, and W. J. Jahng. 2016. “Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium.” Protein Journal 35 (1). doi.org/10.1007/s10930-015-9641-y.
2015
Xiang, X., X. Ding, T. Moser, Q. Gao, T. Shokuhfar, and P. A. Heiden. 2015. “Peptide-Directed Self-Assembly of Functionalized Polymeric Nanoparticles. Part II: Effects of Nanoparticle Composition on Assembly Behavior and Multiple Drug Loading Ability.” Macromolecular Bioscience 15 (4): 568-582. doi.org/10.1002/mabi.201400438.
2014
Friedrich, C. R., M. Kolati, T. Moser, C. Sukotjo, and T. Shokuhfar. 2014. “Survivability of TiO2 Nanotubes on the Surface of Bone Screws.” Surface Innovations 2 (1): 60-68. doi.org/10.1680/si.13.00020.