Skip to main content

Predicting solvent mediated preferential ion pairing in ionic solute mixture


EMSL Project ID
49376

Abstract

A comprehensive understanding of solvent mediated ion pair formation between ionic solutes at the molecular- and mesoscale level remains elusive. This knowledge gap prevents the straightforward tailoring of material formulations for bulk ionic solution (i.e. electrolytes), property optimization and control of interfacial interactions relevant to many biological and chemical reactions. This project focus on the effect of oxidation state and molecular size of redox active ions on preferential ion-pair formation in complex solvent mixtures. Fundamental percipience of solvent-ion and ion-ion interactions and the variance in these solutions for differing charge and molecular size of ionic solutes will be assembled using multi-modal spectroscopic and computational analysis. A team of researchers with expertise in demystifying the solvation structure and dynamics within liquid electrolytes will fuse complementary experimental (NMR, EPR and Raman spectroscopy) and computational (DFT calculations, AIMD simulations) methods together, utilizing the exceptional resources available at EMSL. Gleaned information regarding constitutive interactions will be correlated to conductivity, viscosity, and electrochemical/thermal stability of electrolyte solution.

Project Details

Project type
Large-Scale EMSL Research
Start Date
2016-10-01
End Date
2018-09-30
Status
Closed

Team

Principal Investigator

Vijayakumar Murugesan
Institution
Pacific Northwest National Laboratory

Co-Investigator(s)

Karl Mueller
Institution
Pacific Northwest National Laboratory

Team Members

Aaron Hollas
Institution
Pacific Northwest National Laboratory

Samantha Bennett
Institution
Pacific Northwest National Laboratory

Swadipta Roy
Institution
Pacific Northwest National Laboratory

Nav Nidhi Rajput
Institution
Tufts University

Xiaosong Du
Institution
Oregon State University

Mond Guo
Institution
Pacific Northwest National Laboratory

Xiaoliang Wei
Institution
Pacific Northwest National Laboratory

Wei Wang
Institution
Pacific Northwest National Laboratory

Malsoon Lee
Institution
Pacific Northwest National Laboratory

Amity Andersen
Institution
Environmental Molecular Sciences Laboratory

Niranjan Govind
Institution
Pacific Northwest National Laboratory

Ajay Karakoti
Institution
Pacific Northwest National Laboratory

Perla Balbuena
Institution
Texas A&M University

Related Publications

Andersen A., N. Rajput, K. Han, H. Pan, N. Govind, K.A. Persson, and K.T. Mueller, et al. 2019. "Structure and Dynamics of Polysulfide Clusters in a Nonaqueous Solvent Mixture of 1,3-dioxolane and 1,2-dimethoxyethane." Chemistry of Materials 31, no. 7:pp 2308–2319. PNNL-SA-141178. doi:10.1021/acs.chemmater.8b03944
Duan W, J Huang, JA Kowalski, IA Shkrob, V Murugesan, ED Walter, B Pan, Z Yang, JD Milshtein, B Li, C Liao, Z Zhang, W Wang, J Liu, JS Moore, F Brushett, L Zhang, and X Wei. 2017. "“Wine-Dark Sea” in An Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability." ACS Energy Letters 2(5):1156-1161. doi:10.1021/acsenergylett.7b00261
Huang J., Z. Yang, V. Murugesan, E.D. Walter, A.M. Hollas, B. Pan, and R.S. Assary, et al. 2018. "Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries." ACS Energy Letters 3, no. 10:2533-2538. PNNL-SA-132042. doi:10.1021/acsenergylett.8b01550
Huang J., Z. Yang, V. Murugesan, W. Duan, A.M. Hollas, B. Pan, and W. Wang, et al. 2018. "A Two-Electron Nonaqueous Organic Redox Flow Battery." Advanced Sustainable Systems 2, no. 3:1700131. PNNL-SA-128375. doi:10.1002/adsu.201700131
Lee M., K. Han, J. Lee, Y. Shin, T.C. Kaspar, Y. Chen, and M.H. Engelhard, et al. 2020. "Defect-induced anisotropic surface reactivity and ion transfer procresses of anatase nanparticles." Materials Today Chemistry 17, 100290. PNNL-SA-150217. doi:10.1016/j.mtchem.2020.100290
Murugesan V. 2017. "Key materials of vanadium flow batteries: electrolytes." In Redox Flow Batteries: Fundamentals and Applications. PNNL-SA-125178, Pacific Northwest National Laboratory, Richland, WA. [Unpublished]
Nandasiri MI, AM Schwarz, V Shutthanandan, S Thevuthasan, PB Balbuena, KT Mueller, and V Murugesan. 2017. "In-situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries." PNNL-SA-125447, Pacific Northwest National Laboratory, Richland, WA. [Unpublished]
Nandasiri MI, LE Camacho-Forero, AM Schwarz, V Shutthanandan, S Thevuthasan, PB Balbuena, KT Mueller, and V Murugesan. 2017. "In-situ chemical imaging of Solid-Electrolyte Interphase layer evolution in Li-S batteries." Chemistry of Materials 29(11):4728–4737. doi:10.1021/acs.chemmater.7b00374
Patel V., M. Singh, E. Mayes, A.I. Martinez, V. Shutthanandan, V. Bansal, and S. Singh, et al. 2018. "Ligand-Mediated Reversal of the Oxidation state Dependent ROS Scavenging and Enzyme Mimicking Activity of Ceria Nanoparticles." Chemical Communications 54, no. 99:13973-13976. PNNL-SA-139750. doi:10.1039/c8cc08355j
Rajput NN, V Murugesan, KS Han, KC Lau, J Chen, LA Curtiss, J Liu, KT Mueller, and KA Persson. 2017. "Elucidating the Solvation Structure and Dynamics of Lithium Poly-sulfides resulting from Competitive Salt and Solvent Interactions." PNNL-SA-125254, Pacific Northwest National Laboratory, Richland, WA. [Unpublished]
Rajput N., V. Murugesan, Y. Shin, K. Han, K. Lau, J. Chen, and J. Liu, et al. 2017. "Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides resulting from Competitive Salt and Solvent Interactions." Chemistry of Materials 29, no. 8:3375-3379. PNNL-SA-125254. doi:10.1021/acs.chemmater.7b00068
Shutthanandan V., M.I. Nandasiri, J. Zheng, M.H. Engelhard, W. Xu, S. Thevuthasan, and V. Murugesan. 2019. "Applications of XPS in the Characterization of Battery Materials." Journal of Electron Spectroscopy and Related Phenomena 231. PNNL-SA-134570. doi:10.1016/j.elspec.2018.05.005
Vijayakumar M, Q Luo, RB Lloyd, Z Nie, X Wei, B Li, VL Sprenkle, JD Londono, M Unlu, and W Wang. 2016. "Tuning the perfluorosulfonic acid membrane morphology for vanadium redox flow batteries." ACS Applied Materials & Interfaces 8(50):34327-34334. doi:10.1021/acsami.6b10744