Correlation of Structure and Function of Zinc metalloproteins via Solid-state NMR Methods
EMSL Project ID
7800
Abstract
In the past, we have utilized surrogate probes to address structure/function relationships for zinc. At a qualitative level the surrogate strategy works well. However, the critical nature of zinc in biology requires a detailed understanding of the chemistry, structure, and bonding of these zinc complexes and how, in turn, these manifestations alter the chemistry at the metal binding site. Hence, a qualitative understanding is not sufficient, and a direct probe of zinc is required. X-ray crystallography has been the dominant method because of the unfavorable spectroscopic properties associated with both Mg2+ and Zn2+. To be able to address this specific point, we have employed low temperature (10K) solid-state NMR utilizing cross polarization (CP) from protons to magnesium or zinc. Magnesium and zinc have similar NMR properties: both are quadrupolar with nuclear spin of 5/2 and comparable sensitivity for an equal number of nuclei. The magnetic resonance parameters for both metals are sensitive to the nature of bound ligands. This sensitivity arises from the fact that the dominant interaction in the NMR spectroscopy of these nuclides is the electric field gradient at the nucleus in question. The electric field gradient originates when there is a charge separation and the symmetry around the metal site is not Td or Oh. The origin of the charge separation is due to the nature of the bonding of these ions to their ligands (significant amount of ionic character to the bonds). This partial charge separation is further augmented by ligands that change charge (water and hydroxide) depending on the stage in the particular reaction scheme the protein is undergoing. The principal observable in a 67Zn NMR experiment will be the quadrupole coupling constant, Cq. This coupling constant is directly proportional to the electric field gradient at the Zn2+ ion; as a direct result of these relations, Cq values should be sensitive to the field gradient changes associated with water or hydroxide ligation to Zn2+. Analysis of the lineshape leads to the determination of Cq. Hence, a quadrupolar nuclide should be exquisitely sensitive to changes in structure and bonding at these sites. We have focused on the delineation of structure/function relationships in zinc metalloproteins and specifically on ZnOH2 and ZnSR functional groups. Many zinc enzymes utilize zinc bound water as a critical component of a catalytic reaction. The Zn2+ activates water through ionization, polarization, or simple displacement depending upon the mechanism. The mechanism is determined primarily by the influence of directly bound Zn-ligands, as well as hydrogen bonding with a secondary coordination sphere of side chains and/or bound waters within the protein. With these goals in mind we are examining carbonic anhydrase and some mutant CA?s as examples of water activation. In the other situation zinc promotes the nucleophilicity of the sulfur ligand, as exemplified by the E. coli. DNA repair protein Ada, (Adaptive response to alkylation). This proposal is to develop the needed spectroscopic tools for these experiments and then applies these methods to resolve critical questions relating to the role of the metals in their respective chemistries.
Project Details
Project type
Capability Research
Start Date
2004-12-29
End Date
2005-10-05
Status
Closed
Released Data Link
Team
Principal Investigator
Team Members
Related Publications
Acharya DP, Y Yoon, Z Li, Z Zhang, X Lin, R Mu, L Chen, BD Kay, RJ Rousseau, and Z Dohnalek. 2013. "Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)." ACS Nano 7(11):10414-10423. doi:10.1021/nn404934q
Andersen A, SM Kathmann, MA Lilga, KO Albrecht, RT Hallen, and D Mei. 2014. "Effects of Potassium Doping on CO Hydrogenation Over MoS2 Catalysts: A First-Principles Investigation." Catalysis Communications 52:92-97. doi:10.1016/j.catcom.2014.02.011
Cai Q., J.A. Lopez-Ruiz, A.R. Cooper, J. Wang, K.O. Albrecht, and D. Mei. 2018. "Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia." ACS Catalysis 8, no. 1:488-502. PNNL-SA-112607. doi:10.1021/acscatal.7b03298
Cai Q, J Wang, and D Mei. 2014. "Mechanistic Insights into the Structure Selectivity of Catalytic Furfural Conversion on Platinum Catalysts." PNNL-SA-104546, Pacific Northwest National Laboratory, Richland, WA. [Unpublished]
Celik FE, and M Mavrikakis. 2015. "Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys." Surface Science. doi:10.1016/j.susc.2015.01.001
Chen C, Y Kang, Z Huo, Z Zhu, W Huang, H Xin, J Snyder, D Li, JA Herron, M Mavrikakis, M Chi, KL More, Y Li, NM Markovic, GA Somorjai, P Yang, and VR Stamenkovic. 2014. "Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces." Science 343(6177):1339-1343. doi:10.1126/science.1249061
Chen M, and DA Dixon. 2013. "Tree Growth?Hybrid Genetic Algorithm for Predicting the Structure of Small (TiO2)n, n = 2?13, Nanoclusters." Journal of Chemical Theory and Computation 9(7):3189–3200. doi:10.1021/ct400105c
Chin YH, C Buda, M Neurock, and E Iglesia. 2013. "Consequences of Metal–Oxide Interconversion for C–H Bond Activation during CH4 Reactions on Pd Catalysts." Journal of the American Chemical Society 135(41):15425-15442. doi:10.1021/ja405004m
Farberow CA, JA Dumesic, and M Mavrikakis. 2014. "Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)." ACS Catalysis 4(10):3307–3319. doi:10.1021/cs500668k
Garner EB, AJ Arduengo, III, R Streubel, and DA Dixon. 2013. "Electronic Structure Predictions of the Properties of Non-innocent P-ligands in Group 6B Transition Metal Complexes ." Dalton Transactions 43:2069-2078. doi:10.1039/C3DT52056K
Hahn K, and M Mavrikakis. 2014. "Atomic and Molecular Adsorption on Re(0001)." Topics in Catalysis 57(1-4):54-68. doi:10.1007/s11244-013-0162-7
Herron JA, and M Mavrikakis. 2014. "On the Composition of Bimetallic Near Surface Alloys in the Presence of Oxygen and Carbon Monoxide." Catalysis Communications 52:65-71. doi:10.1016/j.catcom.2013.10.021
Herron JA, J Scaranto, PA Ferrin, S Li, and M Mavrikakis. 2014. "Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory Study." ACS Catalysis 4(12):4434–4445. doi:10.1021/cs500737p
Herron JA, PA Ferrin, and E Mavrikakis. 2014. "First-Principles Mechanistic Analysis of Dimethyl Ether Electro-Oxidation on Monometallic Single-Crystal Surfaces." Journal of Physical Chemistry C 118(42):24199–24211. doi:10.1021/jp505919x
Herron JA, P Ferrin, and M Mavrikakis. 2015. "Electrocatalytic Oxidation of Ammonia on Transition-Metal Surfaces: A First-Principles Study." The Journal of Physical Chemistry C. doi:10.1021/jp512981f
Hibbitts D D,Flaherty D W,Iglesia E 2016. "Effects of Chain Length on the Mechanism and Rates of Metal-Catalyzed Hydrogenolysis of n-Alkanes" Journal of Physical Chemistry C 120(15):8125–8138. 10.1021/acs.jpcc.6b00323
Jones AJ, and E Iglesia. 2014. "Kinetic, Spectroscopic, and Theoretical Assessment of Associative and Dissociative Methanol Dehydration Routes in Zeolites." Angewandte Chemie International Edition 126(45):12373-12377. doi:10.1002/ange.201406823
Kudernatsch W, G Peng, H Zeuthen, Y Bai, LR Merte, L Lammich, F Besenbacher, M Mavrikakis, and S Wendt. 2015. "Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface." ACS Nano. doi:10.1021/acsnano.5b02339
Kyriakou G, ER Davidson, G Peng, LT Roling, S Singh, MB Boucher, MD Marcinkowski, M Mavrikakis, A Michaelides, and ECH Sykes. 2014. "Significant Quantum Effects in Hydrogen Activation." ACS Nano 8(5):4827-4835. doi:10.1021/nn500703k
Li Z, Z Fang, MS Kelley, BD Kay, RJ Rousseau, Z Dohnalek, and DA Dixon. 2014. "Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters." Journal of Physical Chemistry C 118(9):4869-4877. doi:10.1021/jp500255f
Matyba P ,Carr A ,Chen C ,Miller D L,Peng G ,Stefan M ,Mavrikakis E ,Dessau D S,Keller M W,Kapteyn H C,Murnane M M 2015. "Controlling the Electronic Structure of Graphene Using Surface-Adsorbate Interactions" Physical Review B 92():041407. 10.1103/PhysRevB.92.041407
M. Cattelan, G. W. Peng, E. Cavaliere, L. Artiglia, A. Barinov, L. T. Roling, M. Favaro, I. Pis, S. Nappini, E. Magnano, F. Bondino, L. Gavioli, S. Agnoli, M. Mavrikakis and G. Granozzi. 2015. "The nature of the Fe-graphene interface at the nanometer level." Nanoscale 7: 2450-2460
doi: 10.1039/c4nr04956j
Mei D, VM Lebarbier, R Xing, KO Albrecht, and RA Dagle. 2015. "Steam Reforming of Ethylene Glycol over MgAl2O4 Supported Rh, Ni, and Co Catalysts." ACS Catalysis 6(1):315-325. doi:10. 1021/acscatal. 5b01666
Merte LR, R Bechstein, G Peng, F Rieboldt, CA Farberow, H Zeuthen, J Knudsen, E Laegsgaard, S Wendt, M Mavrikakis, and F Besenbacher. 2014. "Water Clustering on Nanostructured Iron Oxide Films." Nature Communications 5:4193. doi:10.1038/ncomms5193
M. Yang, S. Li, Y. Wang, J. A. Herron, Y. Xu, L. F. Allard, S. Lee, J. Huang, M. Mavrikakis, and M. Flytzani-Stephanopoulos. 2015. "Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides." Science 346 (6216): 1498-1501.
doi: 10.1126/science.1260526
Plauck A D,Stangland E E,Dumesic J A,Mavrikakis E 2016. "Active Sites and Mechanisms for H2O2 Decomposition over Pd Catalysts" Proceedings of the National Academy of Sciences of the United States of America 113(14):E1973–E1982. 10.1073/pnas.1602172113
Rousseau RJ, DA Dixon, BD Kay, and Z Dohnalek. 2013. "Dehydration, Dehydrogenation, and Condensation of Alcohols on Oxide Catalysts Based on Cyclic (WO3)3 and (MoO3)3 Clusters ." PNNL-SA-99875, Pacific Northwest National Laboratory, Richland, WA. [Unpublished]
Rubert-Nason P, M Mavrikakis, CT Maravelias, LC Grabow, and LT Biegler. 2013. "Advanced Solution Methods for Microkinetic Models of Catalytic Reactions: A Methanol Synthesis Case Study." AIChE Journal 60(4):1336–1346. doi:10.1002/aic.14322
Sang-Il C, JA Herron, J Scaranto, H Huang, Y Wang, X Xia, T Lv, J Park, HC Peng, M Mavrikakis, and Y Xia. 2015. "A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects." ChemCatChem. doi:10.1002/cctc.201500094
Santiago-Rodrguez Y, JA Herron, MC Curet-Arana, and M Mavrikakis. 2014. "Atomic and Molecular Adsorption on Au(111)." Surface Science 627:57-69. doi:10.1016/j.susc.2014.04.012
Singh S, S Li, R Carrasquillo-Flores, AC Alba-Rubio, JA Dumesic, and M Mavrikakis. 2014. "Formic Acid Decomposition on Au catalysts: DFT, Microkinetic Modeling, and Reaction Kinetics Experiments." AIChE Journal 60(4):1303-1319. doi:10.1002/aic.14401
Tacey S A,Xu L ,Mavrikakis E ,Schauer J J 2016. "Heterogeneous Reduction Pathways for Hg(II) Species on Dry Aerosols: A First-Principles Computational Study" Journal of Physical Chemistry A 120(13):2106–2113. 10.1021/acs.jpca.5b12769
Vjunov A, MY Hu, J Feng, DM Camaioni, D Mei, JZ Hu, C Zhao, and JA Lercher. 2014. "Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase -Zeolite-Catalyzed Conversion of Cyclohexanol in Water." Angewandte Chemie International Edition 53(2):479-482. doi:10.1002/anie.201306673
Xie S, C Sang-Il, N Lu, LT Roling, JA Herron, L Zhang, J Park, J Wang, MJ Kim, Z Xie, M Mavrikakis, and Y Xia. 2014. "Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction." Nano Letters 14(6):3570-3576. doi:10.1021/nl501205j
X. Wang, S. Choi, L. T. Roling, M. Luo, C. Ma, L. Zhang, M. Chi, J. Liu, Z. Xie, J. A. Herron, M. Mavrikakis, and Y. Xia. 2015. "Palladium?platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction." Nature Communications 6(7594)
doi:10.1038/ncomms8594
Yoon Y, RJ Rousseau, RS Weber, D Mei, and JA Lercher. 2014. "First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase." Journal of the American Chemical Society 136(29):10287-10298. doi:10.1021/ja501592y
Zhang L ,Roling L T,Wang X ,Vara M ,Chi M ,Liu J ,Choi SI ,Park J ,Herron J A,Xie Z ,Mavrikakis E ,Xia Y 2015. "Platinum-based Nanocages with Subnanometer-thick Walls and Well-defined, Controllable Facets" Science 349(6246):412-416. 10.1126/science.aab0801